Шпаргалки        04.02.2022   

Что такое кинематика в физике определение кратко. Основные понятия кинематики и кинематические характеристики

В котором изучается механическое движение тел без учета их масс и причин, обеспечивающих это движение.

Иными словами, в кинематике описывается движение тела (траектория движения , скорость и ускорение ) без выяснения причин, почему оно так движется.

Движением обозначают всякое изменение в окружающем материальном мире. Механическое движение - изменение положения тела в пространстве, происходящее с течением времени, наблюдаемое относительно другого тела, условно принятого за неподвижное. Условно неподвижное тело называют телом отсчета. Система координатных осей, связанная с телом отсчета, определяет пространство, в котором происходит движение.

Физическое пространство трехмерно и евклидово, т. е. все измерения осуществляются на основе школьной геометрии. Основной единицей измерения расстояний служит 1 метр (м) , единицей измерения углов - 1 радиан (рад.) .

Время в кинематике рассматривается в качестве непрерывно изменяющейся скалярной величины t . Все другие кинематические величины считаются зависящими от времени (функциями от времени). За основную единицу времени принимают 1 сек .

Кинематика изучает движение:

  • точки твердого (не поддающегося деформации) тела,
  • твердого тела, поддающегося упругой или пластической деформации,
  • жидкости,
  • газа.

Основные задачи кинематики.

1. Описание движения тела с помощью кинематических уравнений движения, таблиц и графиков. Описать движение тела - определить его положение в любой момент времени.

2. Определение кинематических характеристик движения - скорости и ускорения.

3. Изучение сложных (составных) движений и определение зависимости между их характеристиками. Сложным движением называют движение тела относительно системы координат, которая сама движется относительно другой, неподвижной системы координат.

Кинематика рассматривает следующие понятия и движения.

Движение человека является механическим, то есть это изменение тела или его частей относительно других тел. Относительное перемещение описывает кинематика.

Кинематика раздел механики, в котором изучается механическое движение, но не рассматриваются причины, вызывающие это движение . Описание движения как тела человека (его частей) в различных видах спорта , так и различных спортивных снарядов являются неотъемлемой частью спортивной биомеханики и в частности кинематики.

Какой бы материальный объект или явление мы не рассматривали, окажется что вне пространства и вне времени ничего не существует. Любой предмет имеет пространственные размеры и форму, находится в каком-то месте пространства по отношению к другому предмету. Любой процесс, в котором участвуют материальные объекты, имеет во времени начало и конец, сколько то длится во времени, может совершаться раньше или позже другого процесса. Именно по этому возникает необходимость измерять пространственную и временную протяжённости.

Основные единицы измерения кинематических характеристик в международной системе измерений СИ.

Пространство. Одна сорокамиллионная часть длины земного меридиана, проходящего через Париж, была названа метром. Поэтому длина измеряется в метрах (м) и кратных ему единицах измерения: километрах (км), сантиметрах (см) и т. д.

Время – одно из фундаментальных понятий. Можно сказать, что это то, что отделяет два последовательных события. Один из способов измерить время – это использовать любой регулярно повторяющийся процесс. Одна восьмидесяти шести тысячная часть земных суток была выбрана за единицу времени и была названа секундой (с) и кратных ей единицах (минутах, часах и т. д.).

В спорте используются специальные временные характеристики:

Момент времени (t) - это временная мера положения материальной точки , звеньев тела или системы тел . Моментами времени обозначают начало и окончание движения или какой либо его части или фазы.

Длительность движения (∆t) – это его временная мера, которая измеряется разностью моментов окончания и начала движения ∆t = tкон. – tнач.

Темп движения (N) – это временная мера повторности движений, повторяющихся в единицу времени . N = 1/∆t; (1/c) или (цикл/c).

Ритм движений это временная мера соотношения частей (фаз) движений . Он определяется по соотношению длительности частей движения.

Положение тела в пространстве определяют относительно некоторой системы отсчёта, которая включает в себя тело отсчёта (то есть относительно чего рассматривается движение) и систему координат, необходимую для описания на качественном уровне положение тела в той или иной части пространства.

С телом отсчёта связывают начало и направление измерения. Например, в целом ряде соревнований началом координат можно выбрать положение старта. От него уже рассчитывают различные соревновательные дистанции во всех циклических видах спорта. Тем самым в выбранной системе координат «старт – финиш» определяют расстояние в пространстве, на которое переместится спортсмен при движении. Любое промежуточное положение тела спортсмена во время движения характеризуется текущей координатой внутри выбранного дистанционного интервала.

Для точного определения спортивного результата правилами соревнований предусматривается по какой точке (пункт отсчёта) ведётся отсчёт: по носку конька конькобежца, по выступающей точке грудной клетки бегуна-спринтера, или по заднему краю следа приземляющегося прыгуна в длину.

В некоторых случаях для точного описания движения законов биомеханики вводится понятие материальная точка.

Материальная точка это тело, размерами и внутренней структурой которого в данных условиях можно пренебречь .

Движение тел по характеру и интенсивности могут быть различными. Чтобы охарактеризовать эти различия, в кинематике вводят ряд терминов, представленных ниже.

Траектория линия, описываемая в пространстве движущейся точкой тела . При биомеханическом анализе движений прежде всего рассматривают траектории движений характерных точек человека. Как правило, такими точками являются суставы тела. По виду траектории движений делят на прямолинейные (прямая линия) и криволинейные (любая линия, отличная от прямой).

Перемещение это векторная разность конечного и начального положения тела . Следовательно, перемещение характеризует окончательный результат движения.

Путь это длина участка траектории, пройденной телом или точкой тела за выбранный промежуток времени .

Для того, чтобы охарактеризовать насколько быстро изменяется в пространстве положение движущегося тела, используют специальное понятие скорость.

Скорость это отношение пройденного пути ко времени, за который он пройден. Она показывает, как быстро изменяется положение тела в пространстве . Поскольку скорость – это вектор , то она также указывает, в каком направлении движется тело или точка тела.

Средней скоростью тела на данном участке траектории называется отношение пройденного пути ко времени движения, м/с:

Если на всех участках траектории средняя скорость одинакова, то движение называется равномерным.

Вопрос о скорости бега является важным в спортивной биомеханике. Известно, что скорость бега на определённую дистанцию зависит от величины этой дистанции. Бегун может поддерживать максимальную скорость только в течение ограниченного времени (3-4) секунды, высококвалифицированные спринтеры до 5 - 6 секунд). Средняя скорость стайеров гораздо ниже, чем спринтеров. Ниже показана зависимость средней скорости (V) от длины дистанции (S).

Мировые спортивные рекорды и показанная в них средняя скорость

Вид состязаний и дистанция Мужчины Женщины
Средняя скорость м/с Время, показанное на дистанции Средняя скорость м/с
Бег
100 м 9,83 с 10,16 10,49 с 9,53
400 м 43,29 с 9,24 47,60 с 8,40
1500 м 3 мин 29,46 с 7,16 3 мин 52,47 с 6,46
5000 м 12 мин 58,39 с 6,42 14 мин 37,33 с 5,70
10000 м 27 мин 13,81 с 6,12 30 мин 13,75 с 5,51
Марафон (42 км 195 м) 2 ч 6 мин 50 с 5,5 2 ч 21 мин 0,6 с 5,0
Бег на коньках
500 м 36,45 с 13,72 39,10 с 12,78
1500 м 1 мин 52,06 с 13,39 1 мин 59,30 с 12,57
5000 м 6 мин 43,59 с 12,38 7 мин 14,13 с 11,35
10000 м 13 мин 48,20 с 12,07
100 м (вольный стиль) 48,74 с 2,05 54,79 с 1,83
200 м (в/с) 1 мин 47,25 с 1,86 1 мин 57,79 с 1,70
400 м (в/с) 3 мин 46,95 с 1,76 4 мин 3,85 с 1,64

Для удобства проведения вычислений среднюю скорость можно записать и через изменение координат тела. При прямолинейном движении пройденный путь равен разности координат конечной и начальной точек. Так, если в момент времени t0 тело находилось в точке с координатой Х0, а в момент времени t1 – в точке с координатой Х1, то пройденный путь ∆Х = Х1 – Х0, а время движения ∆t = t1 – t0 (символ ∆ обозначает разность однотипных величин или для обозначения очень маленьких интервалов). В этом случае:

Размерность скорости в СИ – м/с. При преодолении больших расстояний скорость определяют в км/час. При необходимости такие значения можно перевести в СИ. Например, 54 км/час = 54000 м /3600 с = 15 м/с.

Средние скорости на различных участках пути значительно отличаются даже при относительно равномерном прохождении дистанции: стартовый разгон, преодоление дистанции с внутрицикловыми колебаниями скорости (во время отталкивания скорость увеличивается, во время свободного скольжения в беге на коньках или фазы полёта в л/а беге – уменьшается), финиширование. По мере уменьшения интервала, по которому вычисляется скорость можно определить скорость в данной точке траектории, которая называется мгновенной скоростью.

Или скоростью в данной точке траектории называется предел, к которому стремится перемещение тела в окрестности этой точки ко времени при неограниченном уменьшении интервала:

Мгновенная скорость – величина векторная.

Если величина скорости (или модуль вектора скорости) не меняется, движение равномерное, при изменении модуля скорости – неравномерное.

Равномерным называют движение, при котором за любые равные промежутки времени тело проходит одинаковые пути . В этом случае величина скорости остаётся неизменной (по направлению скорость может изменяться, если движение криволинейное).

Прямолинейным называют движение, при котором траектория является прямой линией . В этом случае направление скорости остаётся неизменным, (величина скорости может изменяться, если движение не равномерное).

Равномерным прямолинейным называют движение, которое является и равномерным и прямолинейным. В этом случае неизменными остаются и величина и направление.

В общем случае при движении тела изменяются и величина и направление вектора скорости. Для того, чтобы охарактеризовать насколько быстро происходят эти изменения, используют специальную величину – ускорение.

Ускорение это величина, равная отношению изменения скорости движения тела к длительности промежутка времени, за которое это изменение скорости произошло . Среднее ускорение на основе этого определения равно, м/с²:

Мгновенным ускорением называется физическая величина, равная пределу, к которому стремится среднее ускорение за промежуток ∆t → 0, м/с²:

Поскольку вдоль траектории скорость может изменяться как по величине так и по направлению, вектор ускорения имеет две составляющие.

Составляющая вектора ускорения а, направленная вдоль касательной к траектории в данной точке, называется тангенциальным ускорением, которое характеризует изменение вектора скорости по величине.

Составляющая вектора ускорения а, направленная по нормали к касательной в данной точке траектории, называется нормальным ускорением. Оно характеризует изменение вектора скорости по направлению в случае криволинейного движения. Естественно, что когда тело движется по траектории, являющейся прямой линией, нормальное ускорение равно нулю.

Прямолинейное движение называется равнопеременным, если за любые промежутки времени скорость тела изменяется на одну и ту же величину. В этом случае отношение

∆V/ ∆t одинаково для любых интервалов времени. Поэтому величина и направление ускорения остаются неизменными: а = const.

Для прямолинейного движения вектор ускорения направлен по линии движения. Если направление ускорения совпадает с направлением вектора скорости, то величина скорости будет возрастать. В этом случае движение называют равноускоренным. Если направление ускорения противоположно направлению вектора скорости, то величина скорости будет уменьшаться. В этом случае движение называют равнозамедленным. В природе существует естественное равноускоренное движение – это свободное падение.

Свободным падением – называется падение тела, если на него действует единственная сила – сила тяжести . Опыты, проведённые Галилеем, показали, что при свободном падении все тела движутся с одинаковым ускорением свободного падения и обозначаются буквой ĝ. Вблизи поверхности Земли ĝ = 9,8 м/с². Ускорение свободного падения обусловлено притяжением со стороны Земли и направлено вертикально вниз. Строго говоря, такое движение возможно лишь в вакууме. Падение в воздухе можно считать приблизительно свободным.

Траектория движения свободно падающего тела зависит от направления вектора начальной скорости. Если тело брошено вертикально вниз, то траектория – вертикальный отрезок, а движение называется равнопеременным. Если тело брошено вертикально вверх, то траектория состоит из двух вертикальных отрезков. Сначала тело поднимается, двигаясь равнозамедленно. В точке наивысшего подъёма скорость становится равной нулю, после чего тело опускается, двигаясь равноускоренно.

Если вектор начальной скорости направлен под углом к горизонту, то движение происходит по параболе. Так двигаются брошенный мяч, диск, спортсмен, прыгающий в длину, летящая пуля и др.

В зависимости от формы представления кинематических параметров существуют различные виды законов движения.

Закон движения – это одна из форм определения положения тела в пространстве, которая может быть выражена:

Аналитически, то есть с помощью формул. Эта разновидность закона движения задаётся с помощью уравнений движения: x = x(t), y = y(t), z = z(t);

Графически, то есть с помощью графиков изменения координат точки в зависимости от времени;

Таблично, то есть в виде вектора данных, когда в один столбец таблицы заносят числовые отсчёты времени, а в другой в сопоставлении с первым – координаты точки или точек тела.

Часть механики, в которой изучают движение, не рассматривая причины, вызывающие тот или иной характер движения, называют кинематикой .
Механическим движением называют изменение положения тела относительно других тел
Системой отсчёта называют тело отсчёта, связанную с ним систему координат и часы.
Телом отсчёта называют тело, относительно которого рассматривают положение других тел.
Материальной точкой называют тело, размерами которого в данной задаче можно пренебречь.
Траекторией называют мысленную линию, которую при своём движении описывает материальная точка.

По форме траектории движение делится на:
а) прямолинейное - траектория представляет собой отрезок прямой;
б) криволинейное - траектория представляет собой отрезок кривой.

Путь - это длина траектории, которую описывает материальная точка за данный промежуток времени. Это скалярная величина.
Перемещение - это вектор, соединяющий начальное положение материальной точки с её конечным положением (см. рис.).

Очень важно понимать, чем путь отличается от перемещения. Самое главной отличие в том, что перемещение - это вектор с началом в точке отправления и с концом в точке назначения (при этом абсолютно неважно, каким маршрутом это перемещение совершалось). А путь - это, наборот, скалярная величина, отражающая длину пройденной траектории.

Равномерным прямолинейным движением называют движение, при котором материальная точка за любые равные промежутки времени совершает одинаковые перемещения
Скоростью равномерного прямолинейного движения называют отношение перемещения ко времени, за которое это перемещение произошло:


Для неравномерного движения пользуются понятием средней скорости. Часто вводят среднюю скорость как скалярную величину. Это скорость такого равномерного движения, при котором тело проходит тот же путь за то же время, что и при неравномерном движении:


Мгновенной скоростью называют скорость тела в данной точке траектории или в данный момент времени.
Равноускоренное прямолинейное движение - это прямолинейное движение, при котором мгновенная скорость за любые равные промежутки времени изменяется на одну и ту же величину

Ускорением называют отношение изменения мгновенной скорости тела ко времени, за которое это изменение произошло:

Зависимость координаты тела от времени в равномерном прямолинейном движении имеет вид: x = x 0 + V x t , где x 0 - начальная координата тела, V x - скорость движения.
Свободным падением называют равноускоренное движение с постоянным ускорением g = 9,8 м/с 2 , не зависящим от массы падающего тела. Оно происходит только под действием силы тяжести.

Скорость при свободном падении рассчитывается по формуле:

Перемещение по вертикали рассчитывается по формуле:

Одним из видов движения материальной точки является движение по окружности. При таком движении скорость тела направлена по касательной, проведённой к окружности в той точке, где находится тело (линейная скорость). Описывать положение тела на окружности можно с помощью радиуса, проведённого из центра окружности к телу. Перемещение тела при движении по окружности описывается поворотом радиуса окружности, соединяющего центр окружности с телом. Отношение угла поворота радиуса к промежутку времени, в течение которого этот поворот произошёл, характеризует быстроту перемещения тела по окружности и носит название угловой скорости ω :

Угловая скорость связана с линейной скоростью соотношением

где r - радиус окружности.
Время, за которое тело описывает полный оборот, называется периодом обращения. Величина, обратная периоду - частота обращения - ν

Поскольку при равномерном движении по окружности модуль скорости не меняется, но меняется направление скорости, при таком движении существует ускорение. Его называют центростремительным ускорением , оно направлено по радиусу к центру окружности:

Основные понятия и законы динамики

Часть механики, изучающая причины, вызвавшие ускорение тел, называется динамикой

Первый закон Ньютона:
Cуществуют такие системы отсчёта, относительно которых тело сохраняет свою скорость постоянной или покоится, если на него не действуют другие тела или действие других тел скомпенсировано.
Свойство тела сохранять состояние покоя или равномерного прямолинейного движения при уравновешенных внешних силах, действующих на него, называется инертностью. Явление сохранения скорости тела при уравновешенных внешних силах называют инерцией. Инерциальными системами отсчёта называют системы, в которых выполняется первый закон Ньютона.

Принцип относительности Галилея:
во всех инерциальных системах отсчёта при одинаковых начальных условиях все механические явления протекают одинаково, т.е. подчиняются одинаковым законам
Масса - это мера инертности тела
Сила - это количественная мера взаимодействия тел.

Второй закон Ньютона:
Сила, действующая на тело, равна произведению массы тела на ускорение, сообщаемое этой силой:
$F↖{→} = m⋅a↖{→}$

Сложение сил заключается в нахождении равнодействующей нескольких сил, которая производит такое же действие, как и несколько одновременно действующих сил.

Третий закон Ньютона:
Силы, с которыми два тела действуют друг на друга, расположены на одной прямой, равны по модулю и противоположны по направлению:
$F_1↖{→} = -F_2↖{→} $

III закон Ньютона подчёркивает, что действие тел друг на друга носит характер взаимодействия. Если тело A действует на тело B, то и тело B действует на тело A (см. рис.).


Или короче, сила действия равна силе противодействия. Часто возникает вопрос: почему лошадь тянет сани, если эти тела взаимодействуют с равными силами? Это возможно только за счёт взаимодействия с третьим телом - Землёй. Сила, с которой копыта упираются в землю, должна быть больше, чем сила трения саней о землю. Иначе копыта будут проскальзывать, и лошадь не сдвинется с места.
Если тело подвергнуть деформации, то возникают силы, препятствующие этой деформации. Такие силы называют силами упругости .

Закон Гука записывают в виде

где k - жёсткость пружины, x - деформация тела. Знак «−» указывает, что сила и деформация направлены в разные стороны.

При движении тел друг относительно друга возникают силы, препятствующие движению. Эти силы называются силами трения. Различают трение покоя и трение скольжения. Сила трения скольжения подсчитывается по формуле

где N - сила реакции опоры, µ - коэффициент трения.
Эта сила не зависит от площади трущихся тел. Коэффициент трения зависит от материала, из которого сделаны тела, и качества обработки их поверхности.

Трение покоя возникает, если тела не перемещаются друг относительно друга. Сила трения покоя может меняться от нуля до некоторого максимального значения

Гравитационными силами называют силы, с которыми любые два тела притягиваются друг к другу.

Закон всемирного тяготения:
любые два тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

Здесь R - расстояние между телами. Закон всемирного тяготения в таком виде справедлив либо для материальных точек, либо для тел шарообразной формы.

Весом тела называют силу, с которой тело давит на горизонтальную опору или растягивает подвес.

Сила тяжести - это сила, с которой все тела притягиваются к Земле:

При неподвижной опоре вес тела равен по модулю силе тяжести:

Если тело движется по вертикали с ускорением, то его вес будет изменяться.
При движении тела с ускорением, направленным вверх, его вес

Видно, что вес тела больше веса покоящегося тела.

При движении тела с ускорением, направленным вниз, его вес

В этом случае вес тела меньше веса покоящегося тела.

Невесомостью называется такое движение тела, при котором его ускорение равно ускорению свободного падения, т.е. a = g. Это возможно в том случае, если на тело действует только одна сила - сила тяжести.
Искусственный спутник Земли - это тело, имеющее скорость V1, достаточную для того, чтобы двигаться по окружности вокруг Земли
На спутник Земли действует только одна сила - сила тяжести, направленная к центру Земли
Первая космическая скорость - это скорость, которую надо сообщить телу, чтобы оно обращалось вокруг планеты по круговой орбите.

где R - расстояние от центра планеты до спутника.
Для Земли, вблизи её поверхности, первая космическая скорость равна

1.3. Основные понятия и законы статики и гидростатики

Тело (материальная точка) находится в состоянии равновесия, если векторная сумма сил, действующих на него, равна нулю. Различают 3 вида равновесия: устойчивое, неустойчивое и безразличное. Если при выведении тела из положения равновесия возникают силы, стремящиеся вернуть это тело обратно, это устойчивое равновесие. Если возникают силы, стремящиеся увести тело ещё дальше из положения равновесия, это неустойчивое положение ; если никаких сил не возникает - безразличное (см. рис. 3).


Когда речь идёт не о материальной точке, а о теле, которое может иметь ось вращения, то для достижения положения равновесия помимо равенства нулю суммы сил, действующих на тело, необходимо, чтобы алгебраическая сумма моментов всех сил, действующих на тело, была равна нулю.

Здесь d -плечо силы. Плечом силы d называют расстояние от оси вращения до линии действия силы.

Условие равновесия рычага:
алгебраическая сумма моментов всех вращающих тело сил равна нулю.
Давлением называют физическую величину, равную отношению силы, действующей на площадку, перпендикулярную этой силе, к площади площадки:

Для жидкостей и газов справедлив закон Паскаля:
давление распространяется по всем направлениям без изменений.
Если жидкость или газ находятся в поле силы тяжести, то каждый вышерасположенный слой давит на нижерасположенные и по мере погружения внутрь жидкости или газа давление растёт. Для жидкостей

где ρ - плотность жидкости, h - глубина проникновения в жидкость.

Однородная жидкость в сообщающихся сосудах устанавливается на одном уровне. Если в колена сообщающихся сосудов залить жидкость с разными плотностями, то жидкость с большей плотностью устанавливается на меньшей высоте. В этом случае

Высоты столбов жидкости обратно пропорциональны плотностям:

Гидравлический пресс представляет собой сосуд, заполненный маслом или иной жидкостью, в котором прорезаны два отверстия, закрытые поршнями. Поршни имеют разную площадь. Если к одному поршню приложить некоторую силу, то сила, приложенная ко второму поршню, оказывается другой.
Таким образом, гидравлический пресс служит для преобразования величины силы. Поскольку давление под поршнями должно быть одинаковым, то

Тогда A1 = A2.
На тело, погружённое в жидкость или газ, со стороны этой жидкости или газа действует направленная вверх выталкивающая сила, которую называют силой Архимеда
Величину выталкивающей силы устанавливает закон Архимеда : на тело, погружённое в жидкость или газ, действует выталкивающая сила, направленная вертикально вверх и равная весу жидкости или газа, вытесненного телом:

где ρ жидк - плотность жидкости, в которую погружено тело; V погр - объём погружённой части тела.

Условие плавания тела - тело плавает в жидкости или газе, когда выталкивающая сила,действующая на тело, равна силе тяжести, действующей на тело.

1.4. Законы сохранения

Импульсом тела называют физическую величину, равную произведению массы тела на его скорость:

Импульс - векторная величина. [p] =кг·м/с. Наряду с импульсом тела часто пользуются импульсом силы. Это произведение силы на время её действия
Изменение импульса тела равно импульсу действующей на это тело силы. Для изолированной системы тел (система, тела которой взаимодействуют только друг с другом) выполняется закон сохранения импульса : сумма импульсов тел изолированной системы до взаимодействия равна сумме импульсов этих же тел после взаимодействия.
Механической работой называют физическую величину, которая равна произведению силы, действующей на тело, на перемещение тела и на косинус угла между направлением силы и перемещения:

Мощность - это работа, совершённая в единицу времени:

Способность тела совершать работу характеризуют величиной, которую называют энергией. Механическую энергию делят на кинетическую и потенциальную. Если тело может совершать работу за счёт своего движения, говорят, что оно обладает кинетической энергией. Кинетическая энергия поступательного движения материальной точки подсчитывается по формуле

Если тело может совершать работу за счёт изменения своего положения относительно других тел или за счёт изменения положения частей тела, оно обладает потенциальной энергией. Пример потенциальной энергии: тело, поднятое над землёй, его энергия подсчитывается по формуле

где h - высота подъёма

Энергия сжатой пружины:

где k - коэффициент жёсткости пружины, x - абсолютная деформация пружины.

Сумма потенциальной и кинетической энергии составляет механическую энергию. Для изолированной системы тел в механике справедлив закон сохранения механической энергии : если между телами изолированной системы не действуют силы трения (или другие силы, приводящие к рассеянию энергии), то сумма механических энергий тел этой системы не изменяется (закон сохранения энергии в механике). Если же силы трения между телами изолированной системы есть, то при взаимодействии часть механической энергии тел переходит во внутреннюю энергию.

1.5. Механические колебания и волны

Колебаниями называются движения, обладающие той или иной степенью повторяемости во времени. Колебания называются периодическими, если значения физических величин, изменяющихся в процессе колебаний, повторяются через равные промежутки времени.
Гармоническими колебаниями называются такие колебания, в которых колеблющаяся физическая величина x изменяется по закону синуса или косинуса, т.е.

Величина A, равная наибольшему абсолютному значению колеблющейся физической величины x, называется амплитудой колебаний . Выражение α = ωt + ϕ определяет значение x в данный момент времени и называется фазой колебаний. Периодом T называется время, за которое колеблющееся тело совершает одно полное колебание. Частотой периодических колебаний называют число полных колебаний, совершённых за единицу времени:

Частота измеряется в с -1 . Эта единица называется герц (Гц).

Математическим маятником называется материальная точка массой m, подвешенная на невесомой нерастяжимой нити и совершающая колебания в вертикальной плоскости.
Если один конец пружины закрепить неподвижно, а к другому её концу прикрепить некоторое тело массой m, то при выведении тела из положения равновесия пружина растянется и возникнут колебания тела на пружине в горизонтальной или вертикальной плоскости. Такой маятник называется пружинным.

Период колебаний математического маятника определяется по формуле

где l - длина маятника.

Период колебаний груза на пружине определяется по формуле

где k - жёсткость пружины, m - масса груза.

Распространение колебаний в упругих средах.
Среда называется упругой, если между её частицами существуют силы взаимодействия. Волнами называется процесс распространения колебаний в упругих средах.
Волна называется поперечной , если частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волны. Волна называется продольной , если колебания частиц среды происходят в направлении распространения волны.
Длиной волны называется расстояние между двумя ближайшими точками, колеблющимися в одинаковой фазе:

где v - скорость распространения волны.

Звуковыми волнами называют волны, колебания в которых происходят с частотами от 20 до 20 000 Гц.
Скорость звука различна в различных средах. Скорость звука в воздухе равна 340 м/c.
Ультразвуковыми волнами называют волны, частота колебаний в которых превышает 20 000 Гц. Ультразвуковые волны не воспринимаются человеческим ухом.

Содержание и основные понятия кинематики . Чтобы обработать де­таль на металлорежущем станке, необходимо предварительно настроить станок. В коробке скоростей и в механизмах подачи детали, передающие вращение от электродвигателя, соединяют так, что обеспечиваются вполне определенные перемещения детали и инструмента в течении некоторого времени. Перемещение одних тел или частей тела относительно других на­зывается механическим движением . Раздел механики, изуча­ющий механическое движение на основании законов геометрии, называют кинематикой . При этом не принимаются во внимание ни свойства движущихся тел, ни силы, под воздействием которых происходит движе­ние. Так как при движении тела различные его точки могут двигаться по- разному, то в кинематике сначала изучается движение более простого объ­екта, а именно материальной точки.

Материальной точкой называют такое тело, размерами и формой которого можно пренебречь в данной задаче. Например, изучая движение искусственного спутника Земли, можно пренебречь его линейны­ми размерами по сравнению с теми большими расстояниями, которые он преодолевает. В такой задаче спутник может рассматриваться как матери­альная точка.

Введение понятия материальной точки вносит значительное упрощение в исследование движения тел. Для решения задач о движении тела в целом достаточно знать движение одной или двух его точек.

Движущееся тело всегда проходит определенный путь в пространстве от начальной до конечной точки движения, на что затрачивается определен­ное время.

Таким образом, механическое движение есть пере­мещение тел в пространстве и во времени.

Пространство и время являются такими же необходимыми условиями существования окружающего нас мира, как и движение.

Изучая движение в пространстве и во времени, устанавливают геометри­ческие показатели движения - пройденный путь и траекторию движения. В то же время определяют качественные зависимости движения - быстро­ту движения и интенсивность ее изменения. Рассматривая тело в движе­нии, отмечают начало и конец движения, и на этом отрезке определяют осо­бенности движения.

В материальном мире покой и движение относительны. Наблюдаемые нами неподвижные тела (здания, сооружения, неработающие машины) на­ходятся лишь в относительном покое, то есть в покое относительно Земли. В действительности они осуществляют сложное движение вместе с Землей в мировом пространстве.

В относительном покое можно рассматривать и некоторые подвижные те­ла. К примеру, неподвижный пассажир в движущемся вагоне находится в движении лишь по отношению к Земле, а по отношению к вагону он в покое.

Отсюда следует, что всякое движение относительно , так как рассматривается по отношению к определенным телам. Принцип отно­сительности движения позволяет установить особенности его различных видов. Так, конец педали велосипеда по отношению к раме описывает ок­ружность, а по отношению к Земле - сложную кривую.

Используя принцип относительности, можно неподвижное тело принять за подвижное, если рассматривать его относительно движущегося тела.

Именно такой эффект можно наблюдать из неподвижного вагона в тот мо­мент, когда рядом расположенный состав находится в движении: нам ка­жется, что состав неподвижен, а в движении находится вагон, в котором мы находимся.

Таким образом, всякий покой и движение относительны, и рассматри­вать механическое движение необходимо в каждом случае с учетом кон­кретных условий движения и времени.

К основным понятиям кинематики относятся: траектория движения, его продолжительность, пройденный путь, скорость, ускорение.

Траекторией называют линию, которую описывает движущаяся точка в пространстве (рис. 15). Траектории весьма разнообразны: они могут иметь вид прямой линии, окружности, эллипса, параболы (I), цикло­иды (II) и других кривых. Длина траектории при движении материальной точки характеризует пройденный путь. При движении по прямой от од­ной точки пространства к другой пройденный путь равен расстоянию между точками, при движении по другим траекториям путь получается больше расстояния.

Рис. 15

Величина пути и продолжительность движения во времени определяют скорость движения.

Скорость есть быстрота перемещения тел от одной точки простран­ства к другой, которая определяется величиной пути, проходимого за еди­ницу времени.

Движение тела с постоянной скоростью называют равномерным , движение с переменной скоростью - переменным .

Величина, определяющая изменение скорости с течением времени, на­зывается ускорением .


Рис. 16

Из рассмотрения основных понятий кинематики следует, что между кине­матическими величинами механического движения существует тесная связь.

Пройденный путь, скорость и ускорение зависят от времени: с течением времени путь возрастает, а скорость и ускорение могут оставаться постоян­ными или меняться в большую или меньшую сторону.

Закон движения точки может быть выражен графически прямой или кривой линией в координатных осях пути и времени. На рис, 16, I график движения представлен кривой AB, каждая точка которой соответствует оп­ределенному пути и времени. Например, точка а показывает, что к концу 4-й секунды движения пройден путь 35 м.

Используя графический метод, можно построить график пути в зави­симости от скорости и времени (рис. 16, II), график ускорения в зависи­мости от времени, график скорости в зависимости от времени и ускоре­ния (рис. 16, III и IV). Следует иметь в виду, что график движения опре­деляет не форму траектории, а зависимость между указанными величи­нами.

Кинематика имеет большое прикладное значение. На ее основе изучает­ся движение звеньев механизмов и рабочих органов машин, делаются выво­ды, которые используются при проектировании новых механизмов, ма­шин, приборов и других механических устройств.

Простейшие движения твердого тела. Простейшим видом движения тела является равномерное прямолинейное движение. В таком движении, к примеру, находится поезд на Прямом участке пути и т. д. Движение, при ко­тором тело перемещается по прямой и за равные отрезки времени проходит одинаковые пути, называется равномерным прямолиней­ным (рис. 17, I).


Рис. 17

Скорость равномерного движения определяется отношением пройденно­го пути ко времени движения. Единицы скорости устанавливаются по еди­ницам пути и времени. Если, например, путь выражен в метрах, а время в секундах, то скорость получается в м/с. В таких единицах измеряют ско­рость течения воды по трубам, движение воздуха под действием вентилято­ра и т. д. Скорость резания металла на станках измеряют в м/мин, а ско­рость транспортных машин - в км/ч.

В движении тело может совершать различные перемещения с различны­ми скоростями и ускорениями. Одно из таких перемещений - прямолиней­ное возвратно-поступательное движение (рис. 17, II). Наибо­лее типичный пример такого движения - поршень механизма двигателя внутреннего сгорания. Но в отличие от равномерного движения тела в пер­вом примере, поршень движется неравномерно, так как при повороте кри­вошипа (коленчатого вала), с которым он сочленен, на равные углы, пор­шень проходит неравные пути.

Движение, при котором за равные отрезки времени тело проходит нерав­ные пути, называют переменным или неравномерным . Та­кое движение происходит во время разбега машин или торможения.

В переменном движении скорость изменяется непрерывно, ее величина различна в каждый момент времени. Поэтому такую скорость называют мгновенной.

Движение, при котором скорость возрастает, называют ускорен­ны м, а прирост скорости за единицу времени называют ускорением. Численная величина ускорения определяется отношением разности мгно­венных скоростей между рассматриваемыми точками пути ко времени, в течении которого происходило изменение скорости.

Движение тела по отношению к неподвижной системе отсчета называет­ся абсолютным движением. Движение тела по отношению к движущейся системе отсчета называется относительным дви­жением (рис. 17, III).

Криволинейное движение является одним из самых распространен­ных видов движения в механизмах многих машин. В криволинейном движении тело также занимает последовательные положения на траектории и в каждый момент времени имеет определенную мгновенную ско­рость.

Криволинейным (рис. 17, IV) принято называть такое движение, при котором тело при перемещении описывает кривую линию - траекто­рию относительно выбранной системы отсчета.

Рассматривая положения тела через бесконечно малые отрезки времени, можно считать, что вектор скорости совпадает с направлением движения. Но так как направление в криволинейном движении непрерывно меняется, то и вектор скорости тела при переходе его в каждое новое положение изме­няет свое направление по отношению к предыдущему направлению.

Таким образом, вектор скорости тела в криволинейном движении непре­рывно изменяет свое направление со­ответственно форме траектории, оста­ваясь все время касательным к ней.

Этот вывод подтверждается много­численными примерами из практики: раскаленные частицы камня и метал­ла отлетают от точильного круга при его вращении по касательным; потоки воды в работающем центробежном на­сосе устремляются из колеса по каса­тельным к ее окружностям; частицы при отрыве от общей массы тела на криволинейной траектории также от­летают по касательной к траектории в месте отрыва.

3.3. Поступательное и вращатель­ное движения твердого тела. Поступательным называют такое движение, при котором все точки тела имеют одинаковые траектории. Если соединить две любые точки поступательно движущегося тела прямой лини­ей, то эта прямая остается все время параллельна самой себе (рис. 18).

Рис. 18

Сохранение параллельности прямых во всех положениях тела - глав­ный признак поступательного движения.

В большинстве случаев точки поступательно движущегося тела имеют прямолинейные траектории (рис. 18, I). В таком движении находятся, на­пример, поршни компрессоров и насосов, транспортные машины на прямом участке пути и т. п.

Но могут быть случаи криволинейного поступательного движения (рис. 18, II). Так движется, например, рычаг, соединяющий ведущие колеса па­ровоза. Он прикреплен к колесам шарнирно на равном расстоянии от осей.

Благодаря этому при перекатывании колес по рельсам рычаг остается па­раллельным самому себе, а все точки (см. рис. 18) описывают в пространст­ве кривые векторного переноса (одинаковые кривые со сдвигом).

Сохранение параллельности линий движущегося тела возможно в том случае, когда все точки этих линий, перемещаясь из одного положения в другое, проходят одинаковый путь. Отсюда следует, что в поступательном движении все точки тела имеют одинаковые скорости и ускорения, поэтому для характеристики поступательно движущегося тела достаточно знать скорость и ускорение какой-либо одной его точки.

Вращательное движение широко распространено в природе и технике. Планеты Солнечной системы вращаются во­круг своей оси. Во многих меха­низмах и машинах так движутся валы, шкивы, зубчатые колеса, маховики и другие детали.

Вращательное движение харак­теризуется тем, что все точки тела описывают концентрические ок­ружности относительно непо­движной оси, расположенной в пределах тела. Осью вращения на­зывается геометрическое место то­чек, остающихся неподвижными при вращении тела (рис. 19).

Рис. 19

Кинематическими параметрами вращающегося тела являются угло­вое перемещение, угловая скорость и угловое ускорение. Угловое перемеще­ние измеряется величиной угла, на который поворачивается тело за время вращения. За единицу углового перемещения принят радиан - центральный угол, длина дуги которого равна радиусу этой дуги. 1 рад = 57,3°. Централь­ный угол содержит 360°: 57,3° = 6,28 или 2п рад.

Вращательное движение может быть равномерным и неравномерным. Равномерным называют такое вращение, при котором за равные промежут­ки времени тело поворачивается на равные углы. Величина поворота тела за единицу времени определяет угловую скорость.

Численная величина угловой скорости в равномерном вращательном движении определяется отношением углового перемещения ко времени, в течении которого происходит это перемещение.

В практических расчетах угловая скорость обычно выражается числом оборотов тела за одну минуту времени.

Для того чтобы понять, что изучает механика, необходимо рассмотреть, что означает движение в самом общем смысле. Значение этого слова подразумевает под собой изменение чего-либо. Например, политическое движение выступает за равноправие разных слоев населения вне зависимости от их расовой принадлежности. Раньше его не было, затем что-то изменилось и теперь каждый человек имеет равные права. Это движение цивилизации вперед. Еще пример - экологическое. В прошлом, выбравшись на природу, никто не задумывался о том, что оставляет после себя мусор. Сегодня же любой цивилизованный человек соберет его за собой и отвезет в специально отведенное место для дальнейшей утилизации.

Что-то подобное можно наблюдать и в механике. При механическом движении изменяется положение тела в пространстве относительно других предметов с течением времени. Основная задача механики - указать, где находится объект в любой момент, учитывая даже тот, который еще не наступил. То есть, предсказать положение тела в заданное время, а не только узнать, где именно в пространстве оно находилось в прошлом.

Кинематика - это раздел механики, который изучает движение тела, не анализируя его причины. Это значит, что она учит не объяснять, а описывать. То есть, придумать способ, с помощью которого можно было бы задать положение тела в любой момент времени. Основные понятия кинематики включают в себя скорость, ускорение, расстояние, время и перемещение.

Сложность в описании движения

Первая проблема, с которой сталкивается кинематика - это то, что у каждого тела есть определенный размер. Допустим, необходимо описать движение какого-нибудь предмета. Это значит научиться обозначать его положение в любой момент времени. Но каждый предмет занимает в пространстве какое-то место. То есть, что все части этого объекта в один и тот же момент времени занимают разное положение.

Какую точку в таком случае необходимо взять для описания нахождения всего предмета? Если учитывать каждую, то расчеты окажутся слишком сложными. Поэтому решение ответа на этот вопрос можно максимально упростить. Если все точки одного тела движутся в одинаковом направлении, то для описания движения достаточно одной такой, которую содержит это тело.

Виды движения в кинематике

Существует три типа:

  1. Поступательным называется движение, при котором любая прямая проведенная в теле остается параллельной самой себе. Например, автомобиль, который движется по шоссе, совершает такой вид движения.
  2. Вращательным называется такое движение тела при котором все его точки движутся по окружностям с центрами, лежащими на одной прямой, называемой осью вращения. Например, вращение Земли относительно своей оси.
  3. Колебательным называется движение, при котором тело повторяет свою траекторию через определенный отрезок времени. Например, движение маятника.

Основные понятия кинематики - материальная точка

Любое сложное движение можно описать как комбинацию двух простейших видов - поступательного и вращательного. Например колесо автомобиля или юла, стоящая на движущейся прямо платформе, участвуют одновременно в этих двух типах перемещения.

Но что делать, если движение тела нельзя представить в виде комбинации? Например, если автомобиль едет по ухабистой дороге, его положение будет меняться очень сложным образом. Если рассчитывать только то, что этот транспорт перемещается из одного города в другой, то в такой ситуации становится не важно какого размера тело движется из точки А в точку Б и им можно пренебречь. В данном случае важно только за какое время автомобиль прошел определенное расстояние и с какой скоростью двигался.

Однако следует учитывать, что пренебрежение размером допускается не в каждой задаче. Например, если рассчитывать движение при парковке автомобиля, то игнорирование величины данного тела, приведет к пагубным последствием. Поэтому, только в тех ситуациях, когда в рамках конкретной задачи, размерами движущегося объекта можно пренебречь, то такое тело принято называть материальной точкой.

Формулы кинематики

Числа, с помощью которых задается положение точки в пространстве, называются координатами. Чтобы определить его на прямой, достаточно одного числа, когда речь идет о поверхности, то двух, о пространстве - трех. Большего количества чисел в трехмерном мире (для описывания положения материальной точки) не требуется.

Существует три основных уравнения для понятия кинематики, как раздела о движении тел:

  1. v = u + at.
  2. S = ut + 1/2at 2 .
  3. v 2 = u 2 + 2as.

v = конечная скорость,

u = Начальная скорость,

a = ускорение,

s = расстояние, пройденное телом,

Формулы кинематики в одномерном пространстве:

X - X o = V o t + 1/2a t2

V 2 = V o 1 + 2a (X - X o)

X - X o = 1\2 (V o + V) t
Где,

V - конечная скорость (м / с),

V o - начальная скорость (м / с),

a - ускорение (м / с 2),

t - время (с),

X - конечное положение (м),

Формулы кинематики в двумерном пространстве

Поскольку следующие уравнения используются для описания материальной точки на плоскости, стоит рассматривать ось X и Y.

Учитывая направление Х:

a x = constant

V fx = V i x + a x Δt

X f = X i + V i x Δt +1/2a x Δt 2

Δt = V fx -V ix /a x

V fx 2 = V ix 2 + 2ax Δx

X f = X i + 1/2 (V fx + V ix) Δ t .
И учитывая направление y:

a y = constant

V fy = V iy + a y Δt

y f = y i + V iy Δt + 1/2 a x Δt 2

Δt = V fy - V iy /a y

V fy 2 = V iy 2 + 2 ay Δ y

y f = y i +1/2 (V fy + V iy) Δt.

V f - конечная скорость (м / с),

V i - начальная скорость (м / с),

a - ускорение (m / с 2),

t - время (с),

X - конечное положение (м),

X 0 - начальное положение (м).

Перемещение брошенного снаряда - лучший пример для описания движения объекта в двух измерениях. Здесь тело перемещается, как в вертикальном положении У, так и в горизонтальном положении Х, поэтому можно сказать, что предмет имеет две скорости.

Примеры задач по кинематике

Задача 1 : Начальная скорость грузовика равна нулю. Изначально этот объект находится в состоянии покоя. На него начинает действовать равномерное ускорение в течение временного интервала 5,21 секунды. Расстояние, пройденное грузовиком, составляет 110 м. Найти ускорение.

Решение:
Пройденное расстояние s = 110 м,
начальная скорость v i = 0,
время t = 5,21 с,
ускорение a =?
Используя основные понятие и формулы кинематики, можно заключить, что,
s = v i t + 1/2 a t 2 ,
110 м = (0) × (5.21) + 1/2 × a (5.21) 2 ,
a = 8,10 м / с 2 .

Задача 2: Точка движется вдоль оси х (в см), после t секунд путешествия, ее можно представить, используя ​​уравнение x = 14t 2 - t + 10. Необходимо найти среднюю скорость точки, при условии, что t = 3s?

Решение:
Положение точки при t = 0, равно x = 10 см.
При t = 3s, x = 133 см.
Средняя скорость, V av = Δx/Δt = 133-10/3-0 = 41 см / с.

Что такое тело отсчета

О движении можно говорить только если существует что-то, относительно чего рассматривается изменение положения изучаемого объекта. Такой предмет называется телом отсчета и оно условно всегда принимается за неподвижное.

Если в задаче не указано в какой системе отчета движется материальная точка, то телом отсчета считается земля по умолчанию. Однако, это не означает, что за неподвижный в заданный момент времени объект, относительно которого совершается движение, нельзя принять любой другой удобный для расчета. Например, за тело отсчета можно взять движущийся поезд, поворачивающий автомобиль и так далее.

Система отсчета и ее значение в кинематике

Для описания движения необходимы три составляющие:

  1. Система координат.
  2. Тело отсчета.
  3. Прибор для измерения времени.

Тело отсчета, система координат, связанная с ним и прибор для измерения времени образуют систему отсчета. Бессмысленно говорить о движении, если ее не указывать. Правильно подобранная система отсчета, позволяет упростить описание перемещения и, наоборот, усложнить, если она выбрана неудачно.

Именно по этой причине, человечество долго считало, что Солнце движется вокруг Земли и что она находится в центре вселенной. Такое сложное движение светил, связанное с тем, что земные наблюдатели находятся в системе отсчета, которая очень замысловато движется. Земля вращается вокруг свое оси и одновременно вокруг Солнца. На самом деле, если сменить систему отсчета, то все движения небесных тел легко описываются. Это в свое время было сделано Коперником. Он предложил собственное описание мироустройства, в котором Солнце неподвижно. Относительно него описать движение планет гораздо проще, чем если телом отсчета будет являться Земля.

Основные понятия кинематики - путь и траектория

Пусть некоторая точка первое время находилась в положении А, спустя некоторое время она оказалась в положении В. Между ними можно провести одну линию. Но для того, чтобы эта прямая несла больше информации о движении, то есть было понятно откуда и куда двигалось тело, это должен быть не просто отрезок, а направленный, обычно обозначающийся буквой S. Перемещением тела, называется вектор, проведенный из начального положения предмета в конечное.

Если тело изначально находилось в точке А, а затем оказалось в точке В, это не означает, что оно двигалось только по прямой. Из одного положения в другое можно попасть бесконечным количеством способов. Линия, вдоль которой движется тело, является еще одним основным понятием кинематики - траекторией. А ее длина называется путь, который обычно обозначается буквами L или l.