Шпаргалки        04.02.2022   

Какие двугранные углы называются равными. Двугранный угол, перпендикулярные плоскости

















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока: ввести понятие двугранного угла и его линейного угла;

  • рассмотреть задачи на применение этих понятий;
  • сформировать конструктивный навык нахождения угла между плоскостями;
  • рассмотреть задачи на применение этих понятий.
  • Ход урока

    I. Организационный момент.

    Сообщить тему урока, сформировать цели урока.

    II. Актуализация знаний учащихся (слайд 2, 3).

    1. Подготовка к изучению нового материала.

    Что называется углом на плоскости?

    Что называется углом между прямыми в пространстве?

    Что называется углом между прямой и плоскостью?

    Сформулируйте теорему о трех перпендикулярах

    III. Изучение нового материала.

    • Понятие двугранного угла.

    Фигура, образованная двумя полуплоскостями , проходящими через прямую МN, называется двугранным углом (слайд 4).

    Полуплоскости - грани, прямая МN – ребро двугранного угла.

    Какие предметы в обыденной жизни имеют форму двугранного угла? (Cлайд 5)

    • Угол между плоскостями АСН и СНD – это двугранный угол АСНD, где СН – ребро. Точки А и D лежат на гранях этого угла. Угол AFD – линейный угол двугранного угла АCHD (слайд 6).
    • Алгоритм построения линейного угла (слайд 7).

    1 способ. На ребре взять любую точку О и провести перпендикуляры в эту точку (РО DE, KO DE) получили угол РОК - линейный.

    2 способ. В одной полуплоскости взять точку К и опустить из нее два перпендикуляра на другую полуплоскость и ребро (КО и КР), тогда по теореме обратной ТТП РОDE

    • Все линейные углы двугранного угла равны (слайд 8). Доказательство: лучи ОА и О 1 А 1 сонаправлены, лучи ОВ и О 1 В 1 тоже сонаправлены, углы ВОА и В 1 О 1 А 1 равны как углы с сонаправлеными сторонами.
    • Градусной мерой двугранного угла называется градусная мера его линейного угла (слайд 9).

    IV. Закрепление изученного материала.

    • Решение задач (устно по готовым чертежам). (Слайды10-12)

    1. РАВС – пирамида; угол АСВ равен 90 о, прямая РВ перпендикулярна плоскости АВС. Доказать, что угол РСВ – линейный угол двугранного угла с

    2. РАВС - пирамида; АВ = ВС, D – середина отрезка АС, прямая РВ перпендикулярна плоскости АВС. Доказать, что угол PDB – линейный угол двугранного угла с ребром АС.

    3. PABCD – пирамида; прямая РВ перпендикулярна плоскости АВС, ВК перпендикулярна DC. Доказать, что угол РКВ – линейный угол двугранного угла с ребром СD.

    • Задачи на построение линейного угла (слайды 13-14).

    1. Построить линейный угол двугранного угла с ребром АС, если в пирамиде РАВС грань АВС – правильный треугольник, О – точка пересечения медиан, прямая РО перпендикулярна плоскости АВС

    2. Дан ромб АВСD.Прямая РС перпендикулярна плоскости АВСD.

    Построить линейный угол двугранного угла с ребром ВD и линейный угол двугранного угла с ребром АD.

    • Вычислительная задача. (Слайд 15)

    В параллелограмме АВСD угол АDС равен 120 0 , АD = 8 см,

    DС= 6 см, прямая РС перпендикулярна плоскости АВС, РС= 9 см.

    Найти величину двугранного угла с ребром АD и площадь параллелограмма.

    V. Домашнее задание (слайд16).

    П. 22, № 168, 171.

    Используемая литература:

    1. Геометрия 10-11 Л.С.Атанасян.
    2. Система задач по теме “Двугранные углы” М.В.Севостьянова (г.Мурманск), журнал Математика в школе 198… г.
    Тема урока: «Двугранный угол».

    Цель урока: введение понятия двугранного угла и его линейного угла.

    Задачи:

    Образовательная: рассмотреть задачи на применение этих понятий, сформировать конструктивный навык нахождения угла между плоскостями;

    Развивающая: развитие творческого мышления учащихся, личностное саморазвитие учащихся, развитие речи учащихся;

    Воспитательная: воспитание культуры умственного труда, коммуникативной культуры, рефлексивной культуры.

    Тип урока: урок усвоения новых знаний

    Методы обучения: объяснительно-иллюстративный

    Оборудование: компьютер, интерактивная доска.

    Литература:

      Геометрия. 10-11 классы: учеб. для 10-11 кл. общеобразоват. учреждений: базовый и профил. уровни / [Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.] – 18-е изд. – М. : Просвещение, 2009. – 255 с.

    План урока:

      Организационный момент (2 мин)

      Актуализация знаний (5 мин)

      Изучение нового материала (12 мин)

      Закрепление изученного материала (21 мин)

      Домашнее задание (2 мин)

      Подведение итогов (3 мин)

    Ход урока:

    1. Организационный момент.

    Включает в себя приветствие учителем класса, подготовку помещения к уроку, проверку отсутствующих.

    2. Актуализация опорных знаний.

    Учитель: На прошлом уроке вы писали самостоятельную работу. В целом работы написали неплохо. А теперь давайте немного повторим. Что называется углом на плоскости?

    Ученик: Углом на плоскости называется фигура, образованная двумя лучами, исходящими из одной точки.

    Учитель: Что называется углом между прямыми в пространстве?

    Ученик: Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых с вершиной в точке их пересечения.

    Ученик: Углом между скрещивающимися прямыми называется угол между пересекающимися прямыми, соответственно параллельными данным.

    Учитель: Что называется углом между прямой и плоскостью?

    Ученик: Углом между прямой и плоскостью называется любой угол между прямой и ее проекцией на эту плоскость.

    3.Изучение нового материала.

    Учитель: В стереометрии наряду с такими углами рассматривается ещё один вид углов – двугранные углы. Вы, наверное, уже догадались какова тема сегодняшнего урока, поэтому откройте тетради, запишите сегодняшнее число и тему урока.

    Запись на доске и в тетрадях:

    10.12.14.

    Двугранный угол.

    Учитель : Чтобы ввести понятие двугранного угла, следует напомнить, что любая прямая, проведенная в данной плоскости, разделяет эту плоскость на две полуплоскости (рис.1,а)

    Учитель : Представим себе, что мы перегнули плоскость по прямой так, что две полуплоскости с границей оказались уже не лежащими в одной плоскости (рис. 1, б). Полученная фигура и есть двугранный угол. Двугранным углом называется фигура, образованная прямой и двумя полуплоскостями с общей границей, не принадлежащими одной плоскости. Полуплоскости, образующие двугранный угол, называются его гранями. У двугранного угла две грани, отсюда и название - двугранный угол. Прямая - общая граница полуплоскостей - называется ребром двугранного угла. Запишите определение в тетрадь.

    Двугранным углом называется фигура, образованная прямой и двумя полуплоскостями с общей границей, не принадлежащими одной плоскости.

    Учитель : В обыденной жизни мы часто встречаемся с предметами, имеющими форму двугранного угла. Приведите примеры.

    Ученик : Полураскрытая папка.

    Ученик : Стена комнаты совместно с полом.

    Ученик : Двускатные крыши зданий.

    Учитель : Правильно. И таких примеров огромное количество.

    Учитель : Как вы знаете, углы на плоскости измеряются в градусах. Вероятно у вас возник вопрос, а как же измеряются двугранные углы? Это делается следующим образом. Отметим на ребре двугранного угла какую-нибудь точку и в каждой грани из этой точки проведем луч перпендикулярно к ребру. Образованный этими лучами угол называется линейным углом двугранного угла. Сделайте чертёж у себя в тетрадях.

    Запись на доске и в тетрадях.

    О а, АО а, ВО a , СА BD – двугранный угол, AOB – линейный угол двугранного угла.

    Учитель : Все линейные углы двугранного угла равны. Сделайте себе ещё вот такой чертёж.

    Учитель : Докажем это. Рассмотрим два линейных угла АОВ и PQR . Лучи ОА и QP лежат в одной грани и перпендикулярны OQ , значит, они сонаправлены. Аналогично лучи ОВ и QR сонаправлены. Значит, AOB = PQR (как углы с сонаправленными сторонами).

    Учитель : Ну, а теперь ответ на наш вопрос как же измеряется двугранный угол. Градусной мерой двугранного угла называется градусная мера его линейного угла. Перерисуйте из учебника со страницы 48 изображения острого, прямого и тупого двугранного угла.

    4.Закрепление изученного материала.

    Учитель : Сделайте чертежи к задачам.

    1 . Дано: Δ ABC , АС = ВС, АВ лежит в плоскости α, CD α, С α. Построить линейный угол двугранного угла CABD .

    Ученик : Решение: CM AB , DC АВ. CMD - искомый.

    2. Дано: Δ ABC , C = 90°, ВС лежит плоскости α, АО α, A α.

    Построить линейный угол двугранного угла АВСО.

    Ученик : Решение: AB BC , АО ВС, значит, ОС ВС. ACO - искомый.

    3 . Дано: Δ ABC , С = 90°, АВ лежит в плоскости α, CD α, С α. Построить линейный угол двугранного угла DABC .

    Ученик : Решение: CK AB , DC АВ, DK АВ, значит, DKC - искомый.

    4 . Дано: DABC - тетраэдр, DO ABC .Построить линейный угол двугранного угла ABCD .

    Ученик : Решение: DM ВС, DO ВС, значит, ОМ ВС; OMD - искомый.

    5.Подведение итогов.

    Учитель: Что нового вы узнали сегодня на уроке?

    Ученики : Что называется двугранным углом, линейным углом, как измеряется двугранный угол.

    Учитель : Что повторили?

    Ученики : Что называется углом на плоскости; углом между прямыми.

    6.Домашнее задание.

    Запись на доске и в дневниках: п. 22, №167, №170.


    Двугранный угол. Линейный угол двугранного угла. Двугранным углом называется фигура, образованная двумя не принадлежащим одной плоскости полуплоскостями, имеющими общую границу – прямую а. Полуплоскости, образующие двугранный угол, называются его гранями, а общая граница этих полуплоскостей – ребром двугранного угла. Линейным углом двугранного угла называется угол, сторонами которого являются лучи, по которым грани двугранного угла, пересекаются плоскостью, перпендикулярной ребру двугранного угла. У каждого двугранного угла сколько угодно линейных углов: через каждую точку ребра можно провести плоскость, перпендикулярный этому ребру; лучи, по которым эта плоскость пересекает грани двугранного угла, и образуют линейные углы.


    Все линейные углы двугранного угла равны между собой. Докажем, что если равны двугранные углы, образованные плоскостью основания пирамиды КАВС и плоскостям ее боковых граней, то основание перпендикуляра, проведенного из вершины К, является центром вписанной в треугольник АВС окружности.


    Доказательство. Прежде всего, построим линейные углы равных двугранных углов. По определению, плоскость линейного угла должна быть перпендикулярна ребру двугранного угла. Следовательно, ребро двугранного угла должно быть перпендикулярно сторонам линейного угла. Если КО перпендикуляр к плоскости основания, то можно провести ОР перпендикуляр АС, ОR перпендикуляр СВ, OQ перпендикулярAB, а затем соединить точки P, Q, R С точкой К. Тем самым, мы построим проекцию наклонных РК, QK, RK так, что ребра АС, СВ, АВ перпендикулярны этим проекциям. Следовательно, эти ребра перпендикулярны и самим наклонным. И потому плоскости треугольников РОК, QOK, ROK перпендикулярны соответствующим ребрам двугранного угла и образуют те равные линейные углы, о которых сказано в условии. Прямоугольные треугольники РОК, QOK, ROK равны (так как у них общий катет ОК и равны противолежащие этому катету углы). Следовательно, ОР = OR = OQ. Если провести окружность с центром О и радиусом ОР, то стороны треугольника АВС перпендикулярны радиусам ОР, OR и OQ а потому являются касательными к этой окружности.


    Перпендикулярность плоскостей. Плоскость альфа и бета называются перпендикулярными, если линейный угол одного из двугранных углов, образовавшихся при их пересечении равен 90". Признаки перпендикулярности двух плоскостей Если одна из двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.






    На рисунке изображен прямоугольный параллелепипед. Его основаниями служат прямоугольники ABCD и A1B1C1D1. А боковые ребра АА1 ВВ1, СС1, DD1, перпендикулярны к основаниям. Отсюда следует что АА1 перпендикуляр АВ, т. е. боковая грань – прямоугольник. Таким образом, можно обосновать свойства прямоугольного параллелепипеда: В прямоугольном параллелепипеде все шесть граней – прямоугольники. В прямоугольном параллелепипеде все шесть граней – прямоугольники. Все двугранные углы прямоугольного параллелепипеда – прямые. Все двугранные углы прямоугольного параллелепипеда – прямые.


    Теорема Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений. Обратимся снова к рисунку, И докажем что АС12 =АВ2+AD2+АА12 Так как ребро СС1 перпендикулярно к основанию АВСD то угол АСС1 прямой. Из прямоугольного треугольника АСС1 по теореме Пифагора получаем АС12=АС2+СС12. Но АС - диагональ прямоугольника АВСD, поэтому АС2 = АВ2+АD2. Кроме того, СС1 = АА1. Следовательно АС12= АВ2+АD2+AA12 Теорема доказана.







    \(\blacktriangleright\) Двугранный угол – угол, образованный двумя полуплоскостями и прямой \(a\) , которая является их общей границей.

    \(\blacktriangleright\) Чтобы найти угол между плоскостями \(\xi\) и \(\pi\) , нужно найти линейный угол (причем острый или прямой ) двугранного угла, образованного плоскостями \(\xi\) и \(\pi\) :

    Шаг 1: пусть \(\xi\cap\pi=a\) (линия пересечения плоскостей). В плоскости \(\xi\) отметим произвольную точку \(F\) и проведем \(FA\perp a\) ;

    Шаг 2: проведем \(FG\perp \pi\) ;

    Шаг 3: по ТТП (\(FG\) – перпендикуляр, \(FA\) –наклонная, \(AG\) – проекция) имеем: \(AG\perp a\) ;

    Шаг 4: угол \(\angle FAG\) называется линейным углом двугранного угла, образованного плоскостями \(\xi\) и \(\pi\) .

    Заметим, что треугольник \(AG\) – прямоугольный.
    Заметим также, что плоскость \(AFG\) , построенная таким образом, перпендикулярна обеим плоскостям \(\xi\) и \(\pi\) . Следовательно, можно сказать по-другому: угол между плоскостями \(\xi\) и \(\pi\) - это угол между двумя пересекающимися прямыми \(c\in \xi\) и \(b\in\pi\) , образующими плоскость, перпендикулярную и \(\xi\) , и \(\pi\) .

    Задание 1 #2875

    Уровень задания: Сложнее ЕГЭ

    Дана четырехугольная пирамида, все ребра которой равны, причем основание является квадратом. Найдите \(6\cos \alpha\) , где \(\alpha\) – угол между ее смежными боковыми гранями.

    Пусть \(SABCD\) – данная пирамида (\(S\) – вершина), ребра которой равны \(a\) . Следовательно, все боковые грани представляют собой равные равносторонние треугольники. Найдем угол между гранями \(SAD\) и \(SCD\) .

    Проведем \(CH\perp SD\) . Так как \(\triangle SAD=\triangle SCD\) , то \(AH\) также будет высотой в \(\triangle SAD\) . Следовательно, по определению \(\angle AHC=\alpha\) – линейный угол двугранного угла между гранями \(SAD\) и \(SCD\) .
    Так как в основании лежит квадрат, то \(AC=a\sqrt2\) . Заметим также, что \(CH=AH\) – высота равностороннего треугольника со стороной \(a\) , следовательно, \(CH=AH=\frac{\sqrt3}2a\) .
    Тогда по теореме косинусов из \(\triangle AHC\) : \[\cos \alpha=\dfrac{CH^2+AH^2-AC^2}{2CH\cdot AH}=-\dfrac13 \quad\Rightarrow\quad 6\cos\alpha=-2.\]

    Ответ: -2

    Задание 2 #2876

    Уровень задания: Сложнее ЕГЭ

    Плоскости \(\pi_1\) и \(\pi_2\) пересекаются под углом, косинус которого равен \(0,2\) . Плоскости \(\pi_2\) и \(\pi_3\) пересекаются под прямым углом, причем линия пересечения плоскостей \(\pi_1\) и \(\pi_2\) параллельна линии пересечения плоскостей \(\pi_2\) и \(\pi_3\) . Найдите синус угла между плоскостями \(\pi_1\) и \(\pi_3\) .

    Пусть линия пересечения \(\pi_1\) и \(\pi_2\) – прямая \(a\) , линия пересечения \(\pi_2\) и \(\pi_3\) – прямая \(b\) , а линия пересечения \(\pi_3\) и \(\pi_1\) – прямая \(c\) . Так как \(a\parallel b\) , то \(c\parallel a\parallel b\) (по теореме из раздела теоретической справки “Геометрия в пространстве” \(\rightarrow\) “Введение в стереометрию, параллельность”).

    Отметим точки \(A\in a, B\in b\) так, чтобы \(AB\perp a, AB\perp b\) (это возможно, так как \(a\parallel b\) ). Отметим \(C\in c\) так, чтобы \(BC\perp c\) , следовательно, \(BC\perp b\) . Тогда \(AC\perp c\) и \(AC\perp a\) .
    Действительно, так как \(AB\perp b, BC\perp b\) , то \(b\) перпендикулярна плоскости \(ABC\) . Так как \(c\parallel a\parallel b\) , то прямые \(a\) и \(c\) тоже перпендикулярны плоскости \(ABC\) , а значит и любой прямой из этой плоскости, в частности, прямой \(AC\) .

    Отсюда следует, что \(\angle BAC=\angle (\pi_1, \pi_2)\) , \(\angle ABC=\angle (\pi_2, \pi_3)=90^\circ\) , \(\angle BCA=\angle (\pi_3, \pi_1)\) . Получается, что \(\triangle ABC\) прямоугольный, а значит \[\sin \angle BCA=\cos \angle BAC=0,2.\]

    Ответ: 0,2

    Задание 3 #2877

    Уровень задания: Сложнее ЕГЭ

    Даны прямые \(a, b, c\) , пересекающиеся в одной точке, причем угол между любыми двумя из них равен \(60^\circ\) . Найдите \(\cos^{-1}\alpha\) , где \(\alpha\) – угол между плоскостью, образованной прямыми \(a\) и \(c\) , и плоскостью, образованной прямыми \(b\) и \(c\) . Ответ дайте в градусах.

    Пусть прямые пересекаются в точке \(O\) . Так как угол между любыми двумя их них равен \(60^\circ\) , то все три прямые не могут лежать в одной плоскости. Отметим на прямой \(a\) точку \(A\) и проведем \(AB\perp b\) и \(AC\perp c\) . Тогда \(\triangle AOB=\triangle AOC\) как прямоугольные по гипотенузе и острому углу. Следовательно, \(OB=OC\) и \(AB=AC\) .
    Проведем \(AH\perp (BOC)\) . Тогда по теореме о трех перпендикулярах \(HC\perp c\) , \(HB\perp b\) . Так как \(AB=AC\) , то \(\triangle AHB=\triangle AHC\) как прямоугольные по гипотенузе и катету. Следовательно, \(HB=HC\) . Значит, \(OH\) – биссектриса угла \(BOC\) (так как точка \(H\) равноудалена от сторон угла).

    Заметим, что таким образом мы к тому же построили линейный угол двугранного угла, образованного плоскостью, образованной прямыми \(a\) и \(c\) , и плоскостью, образованной прямыми \(b\) и \(c\) . Это угол \(ACH\) .

    Найдем этот угол. Так как точку \(A\) мы выбирали произвольно, то пусть мы выбрали ее так, что \(OA=2\) . Тогда в прямоугольном \(\triangle AOC\) : \[\sin 60^\circ=\dfrac{AC}{OA} \quad\Rightarrow\quad AC=\sqrt3 \quad\Rightarrow\quad OC=\sqrt{OA^2-AC^2}=1.\] Так как \(OH\) – биссектриса, то \(\angle HOC=30^\circ\) , следовательно, в прямоугольном \(\triangle HOC\) : \[\mathrm{tg}\,30^\circ=\dfrac{HC}{OC}\quad\Rightarrow\quad HC=\dfrac1{\sqrt3}.\] Тогда из прямоугольного \(\triangle ACH\) : \[\cos\angle \alpha=\cos\angle ACH=\dfrac{HC}{AC}=\dfrac13 \quad\Rightarrow\quad \cos^{-1}\alpha=3.\]

    Ответ: 3

    Задание 4 #2910

    Уровень задания: Сложнее ЕГЭ

    Плоскости \(\pi_1\) и \(\pi_2\) пересекаются по прямой \(l\) , на которой лежат точки \(M\) и \(N\) . Отрезки \(MA\) и \(MB\) перпендикулярны прямой \(l\) и лежат в плоскостях \(\pi_1\) и \(\pi_2\) соответственно, причем \(MN = 15\) , \(AN = 39\) , \(BN = 17\) , \(AB = 40\) . Найдите \(3\cos\alpha\) , где \(\alpha\) – угол между плоскостями \(\pi_1\) и \(\pi_2\) .

    Треугольник \(AMN\) прямоугольный, \(AN^2 = AM^2 + MN^2\) , откуда \ Треугольник \(BMN\) прямоугольный, \(BN^2 = BM^2 + MN^2\) , откуда \ Запишем для треугольника \(AMB\) теорему косинусов: \ Тогда \ Так как угол \(\alpha\) между плоскостями – это острый угол, а \(\angle AMB\) получился тупым, то \(\cos\alpha=\dfrac5{12}\) . Тогда \

    Ответ: 1,25

    Задание 5 #2911

    Уровень задания: Сложнее ЕГЭ

    \(ABCDA_1B_1C_1D_1\) – параллелепипед, \(ABCD\) – квадрат со стороной \(a\) , точка \(M\) – основание перпендикуляра, опущенного из точки \(A_1\) на плоскость \((ABCD)\) , кроме того \(M\) – точка пересечения диагоналей квадрата \(ABCD\) . Известно, что \(A_1M = \dfrac{\sqrt{3}}{2}a\) . Найдите угол между плоскостями \((ABCD)\) и \((AA_1B_1B)\) . Ответ дайте в градусах.

    Построим \(MN\) перпендикулярно \(AB\) как показано на рисунке.


    Так как \(ABCD\) – квадрат со стороной \(a\) и \(MN\perp AB\) и \(BC\perp AB\) , то \(MN\parallel BC\) . Так как \(M\) – точка пересечения диагоналей квадрата, то \(M\) – середина \(AC\) , следовательно, \(MN\) – средняя линия и \(MN =\frac12BC= \frac{1}{2}a\) .
    \(MN\) – проекция \(A_1N\) на плоскость \((ABCD)\) , причем \(MN\) перпендикулярен \(AB\) , тогда по теореме о трех перпендикулярах \(A_1N\) перпендикулярен \(AB\) и угол между плоскостями \((ABCD)\) и \((AA_1B_1B)\) есть \(\angle A_1NM\) .
    \[\mathrm{tg}\, \angle A_1NM = \dfrac{A_1M}{NM} = \dfrac{\frac{\sqrt{3}}{2}a}{\frac{1}{2}a} = \sqrt{3}\qquad\Rightarrow\qquad\angle A_1NM = 60^{\circ}\]

    Ответ: 60

    Задание 6 #1854

    Уровень задания: Сложнее ЕГЭ

    В квадрате \(ABCD\) : \(O\) – точка пересечения диагоналей; \(S\) – не лежит в плоскости квадрата, \(SO \perp ABC\) . Найдите угол между плоскостями \(ASD\) и \(ABC\) , если \(SO = 5\) , а \(AB = 10\) .

    Прямоугольные треугольники \(\triangle SAO\) и \(\triangle SDO\) равны по двум сторонам и углу между ними (\(SO \perp ABC\) \(\Rightarrow\) \(\angle SOA = \angle SOD = 90^\circ\) ; \(AO = DO\) , т.к. \(O\) – точка пересечения диагоналей квадрата, \(SO\) – общая сторона) \(\Rightarrow\) \(AS = SD\) \(\Rightarrow\) \(\triangle ASD\) – равнобедренный. Точка \(K\) – середина \(AD\) , тогда \(SK\) – высота в треугольнике \(\triangle ASD\) , а \(OK\) – высота в треугольнике \(AOD\) \(\Rightarrow\) плоскость \(SOK\) перпендикулярна плоскостям \(ASD\) и \(ABC\) \(\Rightarrow\) \(\angle SKO\) – линейный угол, равный искомому двугранному углу.


    В \(\triangle SKO\) : \(OK = \frac{1}{2}\cdot AB = \frac{1}{2}\cdot 10 = 5 = SO\) \(\Rightarrow\) \(\triangle SOK\) – равнобедренный прямоугольный треугольник \(\Rightarrow\) \(\angle SKO = 45^\circ\) .

    Ответ: 45

    Задание 7 #1855

    Уровень задания: Сложнее ЕГЭ

    В квадрате \(ABCD\) : \(O\) – точка пересечения диагоналей; \(S\) – не лежит в плоскости квадрата, \(SO \perp ABC\) . Найдите угол между плоскостями \(ASD\) и \(BSC\) , если \(SO = 5\) , а \(AB = 10\) .

    Прямоугольные треугольники \(\triangle SAO\) , \(\triangle SDO\) , \(\triangle SOB\) и \(\triangle SOC\) равны по двум сторонам и углу между ними (\(SO \perp ABC\) \(\Rightarrow\) \(\angle SOA = \angle SOD = \angle SOB = \angle SOC = 90^\circ\) ; \(AO = OD = OB = OC\) , т.к. \(O\) – точка пересечения диагоналей квадрата, \(SO\) – общая сторона) \(\Rightarrow\) \(AS = DS = BS = CS\) \(\Rightarrow\) \(\triangle ASD\) и \(\triangle BSC\) – равнобедренные. Точка \(K\) – середина \(AD\) , тогда \(SK\) – высота в треугольнике \(\triangle ASD\) , а \(OK\) – высота в треугольнике \(AOD\) \(\Rightarrow\) плоскость \(SOK\) перпендикулярна плоскости \(ASD\) . Точка \(L\) – середина \(BC\) , тогда \(SL\) – высота в треугольнике \(\triangle BSC\) , а \(OL\) – высота в треугольнике \(BOC\) \(\Rightarrow\) плоскость \(SOL\) (она же плоскость \(SOK\) ) перпендикулярна плоскости \(BSC\) . Таким образом получаем, что \(\angle KSL\) – линейный угол, равный искомому двугранному углу.


    \(KL = KO + OL = 2\cdot OL = AB = 10\) \(\Rightarrow\) \(OL = 5\) ; \(SK = SL\) – высоты в равных равнобедренных треугольниках, которые можно найти по теореме Пифагора: \(SL^2 = SO^2 + OL^2 = 5^2 + 5^2 = 50\) . Можно заметить, что \(SK^2 + SL^2 = 50 + 50 = 100 = KL^2\) \(\Rightarrow\) для треугольника \(\triangle KSL\) выполняется обратная теорема Пифагора \(\Rightarrow\) \(\triangle KSL\) – прямоугольный треугольник \(\Rightarrow\) \(\angle KSL = 90^\circ\) .

    Ответ: 90

    Подготовка учащихся к сдаче ЕГЭ по математике, как правило, начинается с повторения основных формул, в том числе и тех, которые позволяют определить угол между плоскостями. Несмотря на то, что этот раздел геометрии достаточно подробно освещается в рамках школьной программы, многие выпускники нуждаются в повторении базового материала. Понимая, как найти угол между плоскостями, старшеклассники смогут оперативно вычислить правильный ответ в ходе решения задачи и рассчитывать на получение достойных баллов по итогам сдачи единого государственного экзамена.

    Основные нюансы

      Чтобы вопрос, как найти двугранный угол, не вызывал затруднений, рекомендуем следовать алгоритму решения, который поможет справиться с заданиями ЕГЭ.

      Вначале необходимо определить прямую, по которой пересекаются плоскости.

      Затем на этой прямой нужно выбрать точку и провести к ней два перпендикуляра.

      Следующий шаг - нахождение тригонометрической функции двугранного угла, который образован перпендикулярами. Делать это удобнее всего при помощи получившегося треугольника, частью которого является угол.

      Ответом будет значение угла или его тригонометрической функции.

    Подготовка к экзаменационному испытанию вместе со «Школково» - залог вашего успеха

    В процессе занятий накануне сдачи ЕГЭ многие школьники сталкиваются с проблемой поиска определений и формул, которые позволяют вычислить угол между 2 плоскостями. Школьный учебник не всегда есть под рукой именно тогда, когда это необходимо. А чтобы найти нужные формулы и примеры их правильного применения, в том числе и для нахождения угла между плоскостями в Интернете в режиме онлайн, порой требуется потратить немало времени.

    Математический портал «Школково» предлагает новый подход к подготовке к госэкзамену. Занятия на нашем сайте помогут ученикам определить наиболее сложные для себя разделы и восполнить пробелы в знаниях.

    Мы подготовили и понятно изложили весь необходимый материал. Базовые определения и формулы представлены в разделе «Теоретическая справка».

    Для того чтобы лучше усвоить материал, предлагаем также попрактиковаться в выполнении соответствующих упражнений. Большая подборка задач различной степени сложности, например, на , представлена в разделе «Каталог». Все задания содержат подробный алгоритм нахождения правильного ответа. Перечень упражнений на сайте постоянно дополняется и обновляется.

    Практикуясь в решении задач, в которых требуется найти угол между двумя плоскостями, учащиеся имеют возможность в онлайн-режиме сохранить любое задание в «Избранное». Благодаря этому они смогут вернуться к нему необходимое количество раз и обсудить ход его решения со школьным учителем или репетитором.

    Одни из самых простых пространственных фигур - это многогранней углы.

    Двугранный угол - это фигура, образованная двумя полуплоскости, имеющих общую прямую, их ограничивает. Полуплоскости называются гранями угла, а общая прямая - ребром угла. Степени двугранного угла есть мера соответствующего ему линейного угла.

    Линейный угол двугранного угла - это угол, образованный двумя полупрямой, по которым плоскость, перпендикулярна к ребру двугранного угла, пересекает данный двугранный угол. Мера двугранного угла не зависит от выбора линейного угла.

    Трехгранный угол - это фигура, состоящая из трех плоских углов.

    Гранями трехгранного угла являются плоские углы, ребрами являются стороны плоских углов, вершиной трехгранного угла есть общая вершина плоских углов.

    Двугранные углы, образованные гранями трехгранного угла, называются двугранными углами трехгранного угла.

    Каждый плоский угол трехгранного угла меньше суммы двух других его плоских углов.

    Многогранник есть тело, поверхность которого состоит из конечного числа плоских многоугольников.

    Гранью многогранника является поверхность каждого плоского многоугольника.

    Ребрами многогранника являются стороны граней, вершинами многогранника есть вершины граней.

    Двугранный угол при ребре многогранника определяется его гранями, в которых лежит данное ребро.

    Выпуклым многогранником называется, лежащий по одну сторону от плоскости каждого из плоских многоугольников на его поверхности.

    Каждая грань выпуклого многогранника - это выпуклый многоугольник. Плоскость, проходящая через внутреннюю точку выпуклого многогранника, пересекает его и в сечении образует выпуклый многоугольник.

    Это интересно. Одна из частей геометрии образовала отдельную науку, которая называется топологией. Она изучает топологические свойства фигур, то есть такие, которые хранятся при непрерывных деформациях фигур «без разрывов и склеек».

    Теорема Эйлера, великого математика, физика и астронома, формулирует топологическую свойство многогранников: для любого выпуклого многогранника сумма количества его вершин и количества граней без учета количества его ребер равно числу 2.