Шпаргалки        14.10.2021   

Модульные скобки. Модуль числа (абсолютная величина числа), определения, примеры, свойства

Термин (module) в буквальном переводе с латинского означает «мера». Это понятие было введено в математику английским учёным Р. Котесом. А немецкий математик К. Вейерштрасс ввёл в обращение знак модуля - символ, которым это понятие обозначается при написании.

Вконтакте

Впервые данное понятие изучается в математике по программе 6 класса средней школы. Согласно одному из определений, модуль - это абсолютное значение действительного числа. Другими словами, чтобы узнать модуль действительного числа, необходимо отбросить его знак.

Графически абсолютное значение а обозначается как |a| .

Основная отличительная черта этого понятия заключается в том, что он всегда является неотрицательной величиной.

Числа, которые отличаются друг от друга только знаком, называются противоположными. Если значение положительное, то противоположное ему будет отрицательным, а ноль является противоположным самому себе.

Геометрическое значение

Если рассматривать понятие модуля с позиций геометрии, то он будет обозначать расстояние, которое измеряется в единичных отрезках от начала координат до заданной точки. Это определение полностью раскрывает геометрический смысл изучаемого термина.

Графически это можно выразить следующим образом: |a| = OA.

Свойства абсолютной величины

Ниже будут рассмотрены все математические свойства этого понятия и способы записи в виде буквенных выражений:

Особенности решения уравнений с модулем

Если говорить о решении математических уравнений и неравенств, в которых содержится module, то необходимо помнить, что для их решения потребуется открыть этот знак.

К примеру, если знак абсолютной величины содержит в себе некоторое математическое выражение, то перед тем как раскрыть модуль, необходимо учитывать действующие математические определения.

|А + 5| = А + 5 , если, А больше или равняется нулю.

5-А , если, А значение меньше нуля.

В некоторых случаях знак может раскрываться однозначно при любых значениях переменной.

Рассмотрим ещё одни пример. Построим координатную прямую, на которой отметим все числовые значения абсолютной величиной которых будет 5.

Для начала необходимо начертить координатную прямую, обозначить на ней начало координат и задать размер единичного отрезка. Кроме того, прямая должна иметь направление. Теперь на этой прямой необходимо нанести разметки, которые будут равны величине единичного отрезка.

Таким образом, мы можем увидеть, что на этой координатной прямой будут две интересующие нас точки со значениями 5 и -5.

Не мы выбираем математику своей профессией, а она нас выбирает.

Российский математик Ю.И. Манин

Уравнения с модулем

Наиболее сложно решаемыми задачами школьной математики являются уравнения, содержащие переменные под знаком модуля. Для успешного решения таких уравнений необходимо знать определение и основные свойства модуля. Естественно, что учащиеся должны иметь навыки решения уравнений такого типа.

Основные понятия и свойства

Модуль (абсолютная величина) действительного числа обозначается и определяется следующим образом:

К простым свойствам модуля относятся следующие соотношения:

Отметим , что последние два свойства справедливы для любой четной степени.

Кроме того , если , где , то и

Более сложные свойства модуля , которые можно эффективно использовать при решении уравнений с модулями , формулируются посредством следующих теорем:

Теорема 1. Для любых аналитических функций и справедливо неравенство

Теорема 2. Равенство равносильно неравенству .

Теорема 3. Равенство равносильно неравенству .

Рассмотрим типовые примеры решения задач на тему «Уравнения , содержащие переменные под знаком модуля».

Решение уравнений с модулем

Наиболее распространенным в школьной математике методом решения уравнений с модулем является метод , основанный на раскрытии модулей. Этот метод является универсальным , однако в общем случае его применение может привести к весьма громоздким вычислениям. В этой связи учащиеся должны знать и другие , более эффективные методы и приемы решения таких уравнений. В частности , необходимо иметь навыки применения теорем , приведенных в настоящей статье.

Пример 1. Решить уравнение . (1)

Решение. Уравнение (1) будем решать «классическим» методом –методом раскрытия модулей. Для этого разобьем числовую ось точками и на интервалы и рассмотрим три случая.

1. Если , то , , , и уравнение (1) принимает вид . Отсюда вытекает . Однако здесь , поэтому найденное значение не является корнем уравнения (1).

2. Если , то из уравнения (1) получаем или .

Так как , то корень уравнения (1).

3. Если , то уравнение (1) принимает вид или . Отметим , что .

Ответ: , .

При решении последующих уравнений с модулем будем активно использовать свойства модулей с целью повышения эффективности решения подобных уравнений.

Пример 2. Решить уравнение .

Решение. Так как и , то из уравнения следует . В этой связи , , , и уравнение принимает вид . Отсюда получаем . Однако , поэтому исходное уравнение корней не имеет.

Ответ: корней нет.

Пример 3. Решить уравнение .

Решение. Так как , то . Если , то , и уравнение принимает вид .

Отсюда получаем .

Пример 4. Решить уравнение .

Решение. Перепишем уравнение в равносильном виде . (2)

Полученное уравнение относится к уравнениям типа .

Принимая во внимание теорему 2, можно утверждать, что уравнение (2) равносильно неравенству . Отсюда получаем .

Ответ: .

Пример 5. Решить уравнение .

Решение. Данное уравнение имеет вид . Поэтому , согласно теореме 3 , здесь имеем неравенство или .

Пример 6. Решить уравнение .

Решение. Положим , что . Так как , то заданное уравнение принимает вид квадратного уравнения , (3)

где . Поскольку уравнение (3) имеет единственный положительный корень и , то . Отсюда получаем два корня исходного уравнения: и .

Пример 7. Решить уравнение . (4)

Решение. Так как уравнение равносильно совокупности двух уравнений: и , то при решении уравнения (4) необходимо рассмотреть два случая.

1. Если , то или .

Отсюда получаем , и .

2. Если , то или .

Так как , то .

Ответ: , , , .

Пример 8. Решить уравнение . (5)

Решение. Так как и , то . Отсюда и из уравнения (5) следует, что и , т.е. здесь имеем систему уравнений

Однако данная система уравнений является несовместной.

Ответ: корней нет.

Пример 9. Решить уравнение . (6)

Решение. Если обозначить , то и из уравнения (6) получаем

Или . (7)

Поскольку уравнение (7) имеет вид , то это уравнение равносильно неравенству . Отсюда получаем . Так как , то или .

Ответ: .

Пример 10. Решить уравнение . (8)

Решение. Согласно теореме 1 можно записать

(9)

Принимая во внимание уравнение (8), делаем вывод о том, что оба неравенства (9) обращаются в равенства, т.е. имеет место система уравнений

Однако по теореме 3 приведенная выше система уравнений равносильна системе неравенств

(10)

Решая систему неравенств (10) получаем . Так как система неравенств (10) равносильна уравнению (8), то исходное уравнение имеет единственный корень .

Ответ: .

Пример 11. Решить уравнение . (11)

Решение. Пусть и , тогда из уравнения (11) вытекает равенство .

Отсюда следует, что и . Таким образом, здесь имеем систему неравенств

Решением данной системы неравенств являются и .

Ответ: , .

Пример 12. Решить уравнение . (12)

Решение. Уравнение (12) будем решать методом последовательного раскрытия модулей. Для этого рассмотрим несколько случаев.

1. Если , то .

1.1. Если , то и , .

1.2. Если , то . Однако , поэтому в данном случае уравнение (12) корней не имеет.

2. Если , то .

2.1. Если , то и , .

2.2. Если , то и .

Ответ: , , , , .

Пример 13. Решить уравнение . (13)

Решение. Поскольку левая часть уравнения (13) неотрицательна, то и . В этой связи , и уравнение (13)

принимает вид или .

Известно , что уравнение равносильно совокупности двух уравнений и , решая которые получаем , . Так как , то уравнение (13) имеет один корень .

Ответ: .

Пример 14. Решить систему уравнений (14)

Решение. Так как и , то и . Следовательно, из системы уравнений (14) получаем четыре системы уравнений:

Корни приведенных выше систем уравнений являются корнями системы уравнений (14).

Ответ: ,, , , , , , .

Пример 15. Решить систему уравнений (15)

Решение. Так как , то . В этой связи из системы уравнений (15) получаем две системы уравнений

Корнями первой системы уравнений являются и , а из второй системы уравнений получаем и .

Ответ: , , , .

Пример 16. Решить систему уравнений (16)

Решение. Из первого уравнения системы (16) следует, что .

Так как , то . Рассмотрим второе уравнение системы. Поскольку , то , и уравнение принимает вид , , или .

Если подставить значение в первое уравнение системы (16) , то , или .

Ответ: , .

Для более глубокого изучения методов решения задач , связанных с решением уравнений , содержащих переменные под знаком модуля , можно посоветовать учебные пособия из списка рекомендуемой литературы.

1. Сборник задач по математике для поступающих во втузы / Под ред. М.И. Сканави. – М.: Мир и Образование , 2013. – 608 с.

2. Супрун В.П. Математика для старшеклассников: задачи повышенной сложности. – М.: КД «Либроком» / URSS , 2017. – 200 с.

3. Супрун В.П. Математика для старшеклассников: нестандартные методы решения задач. – М.: КД «Либроком» / URSS , 2017. – 296 с.

Остались вопросы?

Чтобы получить помощь репетитора – зарегистрируйтесь .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Эта статья посвящена приёмам решения различных уравнений и неравенств, содержащих
переменную под знаком модуля.

Если на экзамене вам попадётся уравнение или неравенство с модулем, его можно решить,
вообще не зная никаких специальных методов и пользуясь только определением модуля. Правда,
занять это может часа полтора драгоценного экзаменационного времени.

Поэтому мы и хотим рассказать вам о приёмах, упрощающих решение таких задач.

Прежде всего вспомним, что

Рассмотрим различные типы уравнений с модулем . (К неравенствам перейдём позже.)

Слева модуль, справа число

Это самый простой случай. Решим уравнение

Есть только два числа, модули которых равны четырём. Это 4 и −4. Следовательно, уравнение
равносильно совокупности двух простых:

Второе уравнение не имеет решений. Решения первого: x = 0 и x = 5.

Ответ: 0; 5.

Переменная как под модулем, так и вне модуля

Здесь приходится раскрывать модуль по определению. . . или соображать!

Уравнение распадается на два случая, в зависимости от знака выражения под модулем.
Другими словами, оно равносильно совокупности двух систем:

Решение первой системы: . У второй системы решений нет.
Ответ: 1.

Первый случай: x ≥ 3. Снимаем модуль:

Число , будучи отрицательным, не удовлетворяет условию x ≥ 3 и потому не является корнем исходного уравнения.

Выясним, удовлетворяет ли данному условию число . Для этого составим разность и определим её знак:

Значит, больше трёх и потому является корнем исходного уравнения

Второй случай: x < 3. Снимаем модуль:

Число . больше, чем , и потому не удовлетворяет условию x < 3. Проверим :

Значит, . является корнем исходного уравнения.

Снимать модуль по определению? Страшно даже подумать об этом, ведь дискриминант - не полный квадрат. Давайте лучше воспользуемся следующим соображением: уравнение вида |A| = B равносильно совокупности двух систем:

То же самое, но немного по-другому:

Иными словами, мы решаем два уравнения, A = B и A = −B, а потом отбираем корни, удовлетворяющие условию B ≥ 0.

Приступаем. Сначала решаем первое уравнение:

Затем решаем второе уравнение:

Теперь в каждом случае проверяем знак правой части:

Стало быть, годятся лишь и .

Квадратные уравнения с заменой |x| = t

Решим уравнение:

Поскольку , удобно сделать замену |x| = t. Получаем:

Ответ: ±1.

Модуль равен модулю

Речь идёт об уравнениях вида |A| = |B|. Это - подарок судьбы. Никаких раскрытий модуля по определению! Всё просто:

Например, рассмотрим уравнение: . Оно равносильно следующей совокупности:

Остаётся решить каждое из уравнений совокупности и записать ответ.

Два или несколько модулей

Решим уравнение:

Не будем возиться с каждым модулем по отдельности и раскрывать его по определению - слишком много получится вариантов. Существует более рациональный способ - метод интервалов.

Выражения под модулями обращаются в нуль в точках x = 1, x = 2 и x = 3. Эти точки делят числовую прямую на четыре промежутка (интервала). Отметим на числовой прямой эти точки и расставим знаки для каждого из выражений под модулями на полученных интервалах. (Порядок следования знаков совпадает с порядком следования соответствующих модулей в уравнении.)

Таким образом, нам нужно рассмотреть четыре случая - когда x находится в каждом из интервалов.

Случай 1: x ≥ 3. Все модули снимаются «с плюсом»:

Полученное значение x = 5 удовлетворяет условию x ≥ 3 и потому является корнем исходного уравнения.

Случай 2: 2 ≤ x ≤ 3. Последний модуль теперь снимается «с минусом»:

Полученное значение x также годится - оно принадлежит рассматриваемому промежутку.

Случай 3: 1 ≤ x ≤ 2. Второй и третий модули снимаются «с минусом»:

Мы получили верное числовое равенство при любом x из рассматриваемого промежутка служат решениями данного уравнения.

Случай 4: x ≤ 1 ≤ 1. Второй и третий модули снимаются «с минусом»:

Ничего нового. Мы и так знаем, что x = 1 является решением.

Ответ: ∪ {5}.

Модуль в модуле

Решим уравнение:

Начинаем с раскрытия внутреннего модуля.

1) x ≤ 3. Получаем:

Выражение под модулем обращается в нуль при . Данная точка принадлежит рассматриваемому
промежутку. Поэтому приходится разбирать два подслучая.

1.1) Получаем в этом случае:

Это значение x не годится, так как не принадлежит рассматриваемому промежутку.

1.2) . Тогда:

Это значение x также не годится.

Итак, при x ≤ 3 решений нет. Переходим ко второму случаю.

2) x ≥ 3. Имеем:

Здесь нам повезло: выражение x + 2 положительно в рассматриваемом промежутке! Поэтому никаких подслучаев уже не будет: модуль снимается «с плюсом»:

Это значение x находится в рассматриваемом промежутке и потому является корнем исходного уравнения.

Так решаются все задачи данного типа - раскрываем вложенные модули по очереди, начиная с внутреннего.

Модуль — одна из тех вещей, о которых вроде-бы все слышали, но в действительности никто нормально не понимает. Поэтому сегодня будет большой урок, посвящённый решению уравнений с модулями.

Сразу скажу: урок будет несложный. И вообще модули — вообще тема относительно несложная. «Да конечно, несложная! У меня от неё мозг разрывается!» — скажут многие ученики, но все эти разрывы мозга происходят из-за того, что у большинства людей в голове не знания, а какая-то хрень. И цель этого урока — превратить хрень в знания.:)

Немного теории

Итак, поехали. Начнём с самого важного: что такое модуль? Напомню, что модуль числа — это просто то же самое число, но взятое без знака «минус». Т.е., например, $\left| -5 \right|=5$. Или $\left| -129,5 \right|=129,5$.

Вот так всё просто? Да, просто. А чему тогда равен модуль положительного числа? Тут ещё проще: модуль положительного числа равен самому этому числу: $\left| 5 \right|=5$; $\left| 129,5 \right|=129,5$ и т.д.

Получается любопытная вещь: разные числа могут иметь один тот же модуль. Например: $\left| -5 \right|=\left| 5 \right|=5$; $\left| -129,5 \right|=\left| 129,5 \right|=129,5$. Нетрудно заметить, что это за числа, у которых модули одинаковые: эти числа противоположны. Таким образом, отметим для себя, что модули противоположных чисел равны:

\[\left| -a \right|=\left| a \right|\]

Ещё один важный факт: модуль никогда не бывает отрицательным . Какое бы число мы ни взяли — хоть положительное, хоть отрицательное — его модуль всегда оказывается положительным (или в крайнем случае нулём). Именно поэтому модуль часто называют абсолютной величиной числа.

Кроме того, если объединить определение модуля для положительного и отрицательного числа, то получим глобальное определение модуля для всех чисел. А именно: модуль числа равен самому этому числу, если число положительное (или ноль), либо равен противоположному числу, если число отрицательное. Можно записать это в виде формулы:

Ещё есть модуль нуля, но он всегда равен нулю. Кроме того, ноль — единственное число, которое не имеет противоположного.

Таким образом, если рассмотреть функцию $y=\left| x \right|$ и попробовать нарисовать её график, то получится вот такая «галка»:

График модуля и пример решения уравнения

Из этой картинки сразу видно, что $\left| -m \right|=\left| m \right|$, а график модуля никогда не опускается ниже оси абсцисс. Но это ещё не всё: красной линией отмечена прямая $y=a$, которая при положительных $a$ даёт нам сразу два корня: ${{x}_{1}}$ и ${{x}_{2}}$, но об этом мы поговорим позже.:)

Помимо чисто алгебраического определения, есть геометрическое. Допустим, есть две точки на числовой прямой: ${{x}_{1}}$ и ${{x}_{2}}$. В этом случае выражение $\left| {{x}_{1}}-{{x}_{2}} \right|$ — это просто расстояние между указанными точками. Или, если угодно, длина отрезка, соединяющего эти точки:

Модуль — это расстояние между точками на числовой прямой

Из этого определения также следует, что модуль всегда неотрицателен. Но хватит определений и теории — перейдём к настоящим уравнениям.:)

Основная формула

Ну хорошо, с определением разобрались. Но легче-то от этого не стало. Как решать уравнения, содержащие этот самый модуль?

Спокойствие, только спокойствие. Начнём с самых простых вещей. Рассмотрим что-нибудь типа такого:

\[\left| x \right|=3\]

Итак, модуль$x$ равен 3. Чему может быть равен $x$? Ну, судя по определению, нас вполне устроит $x=3$. Действительно:

\[\left| 3 \right|=3\]

А есть ли другие числа? Кэп как бы намекает, что есть. Например, $x=-3$ — для него тоже $\left| -3 \right|=3$, т.е. требуемое равенство выполняется.

Так может, если поискать, подумать, мы найдём ещё числа? А вот обломитесь: больше чисел нет. Уравнение $\left| x \right|=3$ имеет лишь два корня: $x=3$ и $x=-3$.

Теперь немного усложним задачу. Пусть вместо переменной $x$ под знаком модуля тусуется функция $f\left(x \right)$, а справа вместо тройки поставим произвольное число $a$. Получим уравнение:

\[\left| f\left(x \right) \right|=a\]

Ну и как такое решать? Напомню: $f\left(x \right)$ — произвольная функция, $a$ — любое число. Т.е. вообще любое! Например:

\[\left| 2x+1 \right|=5\]

\[\left| 10x-5 \right|=-65\]

Обратим внимание на второе уравнение. Про него сразу можно сказать: корней у него нет. Почему? Всё правильно: потому что в нём требуется, чтобы модуль был равен отрицательному числу, чего никогда не бывает, поскольку мы уже знаем, что модуль — число всегда положительное или в крайнем случае ноль.

А вот с первым уравнением всё веселее. Тут два варианта: либо под знаком модуля стоит положительное выражение, и тогда$\left| 2x+1 \right|=2x+1$, либо это выражение всё-таки отрицательное, и тогда $\left| 2x+1 \right|=-\left(2x+1 \right)=-2x-1$. В первом случае наше уравнение перепишется так:

\[\left| 2x+1 \right|=5\Rightarrow 2x+1=5\]

И внезапно получается, что подмодульное выражение $2x+1$ действительно положительно — оно равно числу 5. Т.е. мы можем спокойно решать это уравнение — полученный корень будет кусочком ответа:

Особо недоверчивые могут попробовать подставить найденный корень в исходное уравнение и убедиться, что действительно под модулем будет положительное число.

Теперь разберём случай отрицательного подмодульного выражения:

\[\left\{ \begin{align}& \left| 2x+1 \right|=5 \\& 2x+1 \lt 0 \\\end{align} \right.\Rightarrow -2x-1=5\Rightarrow 2x+1=-5\]

Опа! Снова всё чётко: мы предположили, что $2x+1 \lt 0$, и в результате получили, что $2x+1=-5$ — действительно, это выражение меньше нуля. Решаем полученное уравнение, при этом уже точно зная, что найденный корень нас устроит:

Итого мы вновь получили два ответа: $x=2$ и $x=3$. Да, объём вычислений оказался малость побольше, чем в совсем уж простом уравнении $\left| x \right|=3$, но принципиально ничего не изменилось. Так может, существует какой-то универсальный алгоритм?

Да, такой алгоритм существует. И сейчас мы его разберём.

Избавление от знака модуля

Пусть нам дано уравнение $\left| f\left(x \right) \right|=a$, причём $a\ge 0$ (иначе, как мы уже знаем, корней нет). Тогда можно избавиться от знака модуля по следующему правилу:

\[\left| f\left(x \right) \right|=a\Rightarrow f\left(x \right)=\pm a\]

Таким образом, наше уравнение с модулем распадается на два, но уже без модуля. Вот и вся технология! Попробуем решить парочку уравнений. Начнём вот с такого

\[\left| 5x+4 \right|=10\Rightarrow 5x+4=\pm 10\]

Отдельно рассмотрим, когда справа стоит десятка с плюсом, и отдельно — когда с минусом. Имеем:

\[\begin{align}& 5x+4=10\Rightarrow 5x=6\Rightarrow x=\frac{6}{5}=1,2; \\& 5x+4=-10\Rightarrow 5x=-14\Rightarrow x=-\frac{14}{5}=-2,8. \\\end{align}\]

Вот и всё! Получили два корня: $x=1,2$ и $x=-2,8$. Всё решение заняло буквально две строчки.

Ок, не вопрос, давайте рассмотрим что-нибудь чуть посерьёзнее:

\[\left| 7-5x \right|=13\]

Опять раскрываем модуль с плюсом и минусом:

\[\begin{align}& 7-5x=13\Rightarrow -5x=6\Rightarrow x=-\frac{6}{5}=-1,2; \\& 7-5x=-13\Rightarrow -5x=-20\Rightarrow x=4. \\\end{align}\]

Опять пара строчек — и ответ готов! Как я и говорил, в модулях нет ничего сложного. Нужно лишь запомнить несколько правил. Поэтому идём дальше и приступаем с действительно более сложным задачам.

Случай переменной правой части

А теперь рассмотрим вот такое уравнение:

\[\left| 3x-2 \right|=2x\]

Это уравнение принципиально отличается от всех предыдущих. Чем? А тем, что справа от знака равенства стоит выражение $2x$ — и мы не можем заранее знать, положительное оно или отрицательное.

Как быть в таком случае? Во-первых, надо раз и навсегда понять, что если правая часть уравнения окажется отрицательной, то уравнение не будет иметь корней — мы уже знаем, что модуль не может быть равен отрицательному числу.

А во-вторых, если права часть всё-таки положительна (или равна нулю), то можно действовать точно так же, как раньше: просто раскрыть модуль отдельно со знаком «плюс» и отдельно — со знаком «минус».

Таким образом, сформулируем правило для произвольных функций $f\left(x \right)$ и $g\left(x \right)$ :

\[\left| f\left(x \right) \right|=g\left(x \right)\Rightarrow \left\{ \begin{align}& f\left(x \right)=\pm g\left(x \right), \\& g\left(x \right)\ge 0. \\\end{align} \right.\]

Применительно к нашему уравнению получим:

\[\left| 3x-2 \right|=2x\Rightarrow \left\{ \begin{align}& 3x-2=\pm 2x, \\& 2x\ge 0. \\\end{align} \right.\]

Ну, с требованием $2x\ge 0$ мы как-нибудь справимся. В конце концов, можно тупо подставить корни, которые мы получим из первого уравнения, и проверить: выполняется неравенство или нет.

Поэтому решим-ка само уравнение:

\[\begin{align}& 3x-2=2\Rightarrow 3x=4\Rightarrow x=\frac{4}{3}; \\& 3x-2=-2\Rightarrow 3x=0\Rightarrow x=0. \\\end{align}\]

Ну и какой их этих двух корней удовлетворяет требованию $2x\ge 0$? Да оба! Поэтому в ответ пойдут два числа: $x={4}/{3}\;$ и $x=0$. Вот и всё решение.:)

Подозреваю, что кто-то из учеников уже начал скучать? Что ж, рассмотрим ещё более сложное уравнение:

\[\left| {{x}^{3}}-3{{x}^{2}}+x \right|=x-{{x}^{3}}\]

Хоть оно и выглядит злобно, по факту это всё то же самое уравнение вида «модуль равен функции»:

\[\left| f\left(x \right) \right|=g\left(x \right)\]

И решается оно точно так же:

\[\left| {{x}^{3}}-3{{x}^{2}}+x \right|=x-{{x}^{3}}\Rightarrow \left\{ \begin{align}& {{x}^{3}}-3{{x}^{2}}+x=\pm \left(x-{{x}^{3}} \right), \\& x-{{x}^{3}}\ge 0. \\\end{align} \right.\]

С неравенством мы потом разберёмся — оно какое-то уж слишком злобное (на самом деле простое, но мы его решать не будем). Пока лучше займёмся полученными уравнениями. Рассмотрим первый случай — это когда модуль раскрывается со знаком «плюс»:

\[{{x}^{3}}-3{{x}^{2}}+x=x-{{x}^{3}}\]

Ну, тут и ежу понятно, что нужно всё собрать слева, привести подобные и посмотреть, что получится. А получится вот что:

\[\begin{align}& {{x}^{3}}-3{{x}^{2}}+x=x-{{x}^{3}}; \\& 2{{x}^{3}}-3{{x}^{2}}=0; \\\end{align}\]

Выносим общий множитель ${{x}^{2}}$ за скобку и получаем очень простое уравнение:

\[{{x}^{2}}\left(2x-3 \right)=0\Rightarrow \left[ \begin{align}& {{x}^{2}}=0 \\& 2x-3=0 \\\end{align} \right.\]

\[{{x}_{1}}=0;\quad {{x}_{2}}=\frac{3}{2}=1,5.\]

Тут мы воспользовались важным свойством произведения, ради которого мы и раскладывали исходный многочлен на множители: произведение равно нулю, когда хотя бы один из множителей равен нулю.

Теперь точно так же разберёмся со вторым уравнением, которое получается при раскрытии модуля со знаком «минус»:

\[\begin{align}& {{x}^{3}}-3{{x}^{2}}+x=-\left(x-{{x}^{3}} \right); \\& {{x}^{3}}-3{{x}^{2}}+x=-x+{{x}^{3}}; \\& -3{{x}^{2}}+2x=0; \\& x\left(-3x+2 \right)=0. \\\end{align}\]

Опять то же самое: произведение равно нулю, когда равен нулю хотя бы один из множителей. Имеем:

\[\left[ \begin{align}& x=0 \\& -3x+2=0 \\\end{align} \right.\]

Ну вот мы получили три корня: $x=0$, $x=1,5$ и $x={2}/{3}\;$. Ну и что из этого набора пойдёт в окончательный ответ? Для этого вспомним, что у нас есть дополнительное ограничение в виде неравенства:

Как учесть это требование? Да просто подставим найденные корни и проверим: выполняется неравенство при этих $x$ или нет. Имеем:

\[\begin{align}& x=0\Rightarrow x-{{x}^{3}}=0-0=0\ge 0; \\& x=1,5\Rightarrow x-{{x}^{3}}=1,5-{{1,5}^{3}} \lt 0; \\& x=\frac{2}{3}\Rightarrow x-{{x}^{3}}=\frac{2}{3}-\frac{8}{27}=\frac{10}{27}\ge 0; \\\end{align}\]

Таким образом, корень $x=1,5$ нас не устраивает. И в ответ пойдут лишь два корня:

\[{{x}_{1}}=0;\quad {{x}_{2}}=\frac{2}{3}.\]

Как видите, даже в этом случае ничего сложного не было — уравнения с модулями всегда решаются по алгоритму. Нужно лишь хорошо разбираться в многочленах и неравенствах. Поэтому переходим к более сложным задачам — там уже будет не один, а два модуля.

Уравнения с двумя модулями

До сих пор мы изучали лишь самые простые уравнения — там был один модуль и что-то ещё. Это «что-то ещё» мы отправляли в другую часть неравенства, подальше от модуля, чтобы в итоге всё свелось к уравнению вида $\left| f\left(x \right) \right|=g\left(x \right)$ или даже более простому $\left| f\left(x \right) \right|=a$.

Но детский сад закончился — пора рассмотреть что-нибудь посерьёзнее. Начнём с уравнений вот такого типа:

\[\left| f\left(x \right) \right|=\left| g\left(x \right) \right|\]

Это уравнение вида «модуль равен модулю». Принципиально важным моментом является отсутствие других слагаемых и множителей: только один модуль слева, ещё один модуль справа — и ничего более.

Кто-нибудь сейчас подумает, что такие уравнения решаются сложнее, чем то, что мы изучали до сих пор. А вот и нет: эти уравнения решаются даже проще. Вот формула:

\[\left| f\left(x \right) \right|=\left| g\left(x \right) \right|\Rightarrow f\left(x \right)=\pm g\left(x \right)\]

Всё! Мы просто приравниваем подмодульные выражения, ставя перед одним из них знак «плюс-минус». А затем решаем полученные два уравнения — и корни готовы! Никаких дополнительных ограничений, никаких неравенств и т.д. Всё очень просто.

Давайте попробуем решать вот такую задачу:

\[\left| 2x+3 \right|=\left| 2x-7 \right|\]

Элементарно, Ватсон! Раскрываем модули:

\[\left| 2x+3 \right|=\left| 2x-7 \right|\Rightarrow 2x+3=\pm \left(2x-7 \right)\]

Рассмотрим отдельно каждый случай:

\[\begin{align}& 2x+3=2x-7\Rightarrow 3=-7\Rightarrow \emptyset ; \\& 2x+3=-\left(2x-7 \right)\Rightarrow 2x+3=-2x+7. \\\end{align}\]

В первом уравнении корней нет. Потому что когда это $3=-7$? При каких значениях $x$? «Какой ещё нафиг $x$? Ты обкурился? Там вообще нет $x$» — скажете вы. И будете правы. Мы получили равенство, не зависящее от переменной $x$, и при этом само равенство — неверное. Потому и нет корней.:)

Со вторым уравнением всё чуть интереснее, но тоже очень и очень просто:

Как видим, всё решилось буквально в пару строчек — другого от линейного уравнения мы и не ожидали.:)

В итоге окончательный ответ: $x=1$.

Ну как? Сложно? Конечно, нет. Попробуем что-нибудь ещё:

\[\left| x-1 \right|=\left| {{x}^{2}}-3x+2 \right|\]

Опять у нас уравнение вида $\left| f\left(x \right) \right|=\left| g\left(x \right) \right|$. Поэтому сразу переписываем его, раскрывая знак модуля:

\[{{x}^{2}}-3x+2=\pm \left(x-1 \right)\]

Возможно, кто-то сейчас спросит: «Эй, что за бред? Почему «плюс-минус» стоит у правого выражения, а не у левого?» Спокойно, сейчас всё объясню. Действительно, по-хорошему мы должны были переписать наше уравнение следующим образом:

Затем нужно раскрыть скобки, перенести все слагаемые в одну сторону от знака равенства (поскольку уравнение, очевидно, в обоих случаях будет квадратным), ну и дальше отыскать корни. Но согласитесь: когда «плюс-минус» стоит перед тремя слагаемыми (особенно когда одно из этих слагаемых — квадратное выражение), это как-то более сложно выглядит, нежели ситуация, когда «плюс-минус» стоит лишь перед двумя слагаемыми.

Но ведь ничто не мешает нам переписать исходное уравнение следующим образом:

\[\left| x-1 \right|=\left| {{x}^{2}}-3x+2 \right|\Rightarrow \left| {{x}^{2}}-3x+2 \right|=\left| x-1 \right|\]

Что произошло? Да ничего особенного: просто поменяли левую и правую часть местами. Мелочь, которая в итоге немного упростит нам жизнь.:)

В общем, решаем это уравнение, рассматривая варианты с плюсом и с минусом:

\[\begin{align}& {{x}^{2}}-3x+2=x-1\Rightarrow {{x}^{2}}-4x+3=0; \\& {{x}^{2}}-3x+2=-\left(x-1 \right)\Rightarrow {{x}^{2}}-2x+1=0. \\\end{align}\]

Первое уравнение имеет корни $x=3$ и $x=1$. Второе вообще является точным квадратом:

\[{{x}^{2}}-2x+1={{\left(x-1 \right)}^{2}}\]

Поэтому у него единственный корень: $x=1$. Но этот корень мы уже получали ранее. Таким образом, в итоговый ответ пойдут лишь два числа:

\[{{x}_{1}}=3;\quad {{x}_{2}}=1.\]

Миссия выполнена! Можно взять с полки и скушать пирожок. Там их 2, ваш средний.:)

Важное замечание . Наличие одинаковых корней при разных вариантах раскрытия модуля означает, что исходные многочлены раскладываются на множители, и среди этих множителей обязательно будет общий. Действительно:

\[\begin{align}& \left| x-1 \right|=\left| {{x}^{2}}-3x+2 \right|; \\& \left| x-1 \right|=\left| \left(x-1 \right)\left(x-2 \right) \right|. \\\end{align}\]

Одно из свойств модуля: $\left| a\cdot b \right|=\left| a \right|\cdot \left| b \right|$ (т.е. модуль произведения равен произведению модулей), поэтому исходное уравнение можно переписать так:

\[\left| x-1 \right|=\left| x-1 \right|\cdot \left| x-2 \right|\]

Как видим, у нас действительно возник общий множитель. Теперь, если собрать все модули с одной стороны, то можно вынести этот множитель за скобку:

\[\begin{align}& \left| x-1 \right|=\left| x-1 \right|\cdot \left| x-2 \right|; \\& \left| x-1 \right|-\left| x-1 \right|\cdot \left| x-2 \right|=0; \\& \left| x-1 \right|\cdot \left(1-\left| x-2 \right| \right)=0. \\\end{align}\]

Ну а теперь вспоминаем, что произведение равно нулю, когда хотя бы один из множителей равен нулю:

\[\left[ \begin{align}& \left| x-1 \right|=0, \\& \left| x-2 \right|=1. \\\end{align} \right.\]

Таким образом, исходное уравнение с двумя модулями свелось к двум простейшим уравнениям, о которых мы говорили в самом начале урока. Такие уравнения решаются буквально в пару строчек.:)

Данное замечание, возможно, покажется излишне сложным и неприменимым на практике. Однако в реальности вам могут встретиться куда более сложные задачи, нежели те, что мы сегодня разбираем. В них модули могут комбинироваться с многочленами, арифметическими корнями, логарифмами и т.д. И в таких ситуациях возможность понизить общую степень уравнения путём вынесения чего-либо за скобку может оказаться очень и очень кстати.:)

Теперь хотелось бы разобрать ещё одно уравнение, которое на первый взгляд может показаться бредовым. На нём «залипают» многие ученики — даже те, которые считают, что хорошо разобрались в модулях.

Тем не менее, это уравнение решается даже проще, чем то, что мы рассматривали ранее. И если вы поймёте почему, то получите ещё один приём для быстрого решения уравнений с модулями.

Итак, уравнение:

\[\left| x-{{x}^{3}} \right|+\left| {{x}^{2}}+x-2 \right|=0\]

Нет, это не опечатка: между модулями именно плюс. И нам нужно найти, при каких $x$ сумма двух модулей равна нулю.:)

В чём вообще проблема? А проблема в том, что каждый модуль — число положительное, либо в крайнем случае ноль. А что будет, если сложить два положительных числа? Очевидно, снова положительное число:

\[\begin{align}& 5+7=12 \gt 0; \\& 0,004+0,0001=0,0041 \gt 0; \\& 5+0=5 \gt 0. \\\end{align}\]

Последняя строчка может натолкнуть на мысль: единственный случай, когда сумма модулей равна нулю — это если каждый модуль будет равен нулю:

\[\left| x-{{x}^{3}} \right|+\left| {{x}^{2}}+x-2 \right|=0\Rightarrow \left\{ \begin{align}& \left| x-{{x}^{3}} \right|=0, \\& \left| {{x}^{2}}+x-2 \right|=0. \\\end{align} \right.\]

А когда модуль равен нулю? Только в одном случае — когда подмодульное выражение равно нулю:

\[{{x}^{2}}+x-2=0\Rightarrow \left(x+2 \right)\left(x-1 \right)=0\Rightarrow \left[ \begin{align}& x=-2 \\& x=1 \\\end{align} \right.\]

Таким образом, у нас есть три точки, в которых обнуляется первый модуль: 0, 1 и −1; а также две точки, в которых обнуляется второй модуль: −2 и 1. Однако нам нужно, чтобы оба модуля обнулялись одновременно, поэтому среди найденных чисел нужно выбрать те, которые входят в оба набора. Очевидно, такое число лишь одно: $x=1$ — это и будет окончательным ответом.

Метод расщепления

Что ж, мы уже рассмотрели кучу задач и изучили множество приёмов. Думаете, на этом всё? А вот и нет! Сейчас мы рассмотрим заключительный приём — и одновременно самый важный. Речь пойдёт о расщеплении уравнений с модулем. О чём вообще пойдёт речь? Давайте вернёмся немного назад и рассмотрим какое-нибудь простое уравнение. Например, это:

\[\left| 3x-5 \right|=5-3x\]

В принципе, мы уже знаем, как решать такое уравнение, потому что это стандартная конструкция вида $\left| f\left(x \right) \right|=g\left(x \right)$. Но попробуем взглянуть на это уравнение немного под другим углом. Точнее, рассмотрим выражение, стоящее под знаком модуля. Напомню, что модуль любого числа может быть равен самому числу, а может быть противоположен этому числу:

\[\left| a \right|=\left\{ \begin{align}& a,\quad a\ge 0, \\& -a,\quad a \lt 0. \\\end{align} \right.\]

Собственно, в этой неоднозначности и состоит вся проблема: поскольку число под модулем меняется (оно зависит от переменной), нам неясно — положительное оно или отрицательное.

Но что если изначально потребовать, чтобы это число было положительным? Например, потребуем, чтобы $3x-5 \gt 0$ — в этом случае мы гарантированно получим положительное число под знаком модуля, и от этого самого модуля можно полностью избавиться:

Таким образом, наше уравнение превратится в линейное, которое легко решается:

Правда, все эти размышления имеют смысл только при условии $3x-5 \gt 0$ — мы сами ввели это требование, дабы однозначно раскрыть модуль. Поэтому давайте подставим найденный $x=\frac{5}{3}$ в это условие и проверим:

Получается, что при указанном значении $x$ наше требование не выполняется, т.к. выражение оказалось равно нулю, а нам нужно, чтобы оно было строго больше нуля. Печалька.:(

Но ничего страшного! Ведь есть ещё вариант $3x-5 \lt 0$. Более того: есть ещё и случай $3x-5=0$ — это тоже нужно рассмотреть, иначе решение будет неполным. Итак, рассмотрим случай $3x-5 \lt 0$:

Очевидно, что в модуль раскроется со знаком «минус». Но тогда возникает странная ситуация: и слева, и справа в исходном уравнении будет торчать одно и то же выражение:

Интересно, при каких таких $x$ выражение $5-3x$ будет равно выражению $5-3x$? От таких уравнений даже Капитан очевидность подавился бы слюной, но мы-то знаем: это уравнение является тождеством, т.е. оно верно при любых значениях переменной!

А это значит, что нас устроят любые $x$. Вместе с тем у нас есть ограничение:

Другими словами, ответом будет не какое-то отдельное число, а целый интервал:

Наконец, осталось рассмотреть ещё один случай: $3x-5=0$. Тут всё просто: под модулем будет ноль, а модуль нуля тоже равен нулю (это прямо следует из определения):

Но тогда исходное уравнение $\left| 3x-5 \right|=5-3x$ перепишется следующим образом:

Этот корень мы уже получали выше, когда рассматривали случай $3x-5 \gt 0$. Более того, это корень является решением уравнения $3x-5=0$ — это ограничение, которое мы сами же и ввели, чтобы обнулить модуль.:)

Таким образом, помимо интервала нас устроит ещё и число, лежащее на самом конце этого интервала:


Объединение корней в уравнениях с модулем

Итого окончательный ответ: $x\in \left(-\infty ;\frac{5}{3} \right]$. Не очень-то привычно видеть такую хрень в ответе к довольно простому (по сути — линейному) уравнению с модулем, правда? Что ж, привыкайте: в том и состоит сложность модуля, что ответы в таких уравнениях могут оказаться совершенно непредсказуемыми.

Куда важнее другое: мы только что разобрали универсальный алгоритм решения уравнения с модуляем! И состоит этот алгоритм из следующих шагов:

  1. Приравнять каждый модуль, имеющийся в уравнении, к нулю. Получим несколько уравнений;
  2. Решить все эти уравнения и отметить корни на числовой прямой. В результате прямая разобьётся на несколько интервалов, на каждом из которых все модули однозначно раскрываются;
  3. Решить исходное уравнение для каждого интервала и объединить полученные ответы.

Вот и всё! Остаётся лишь один вопрос: куда девать сами корни, полученные на 1-м шаге? Допустим, у нас получилось два корня: $x=1$ и $x=5$. Они разобьют числовую прямую на 3 куска:

Разбиение числовой оси на интервалы с помощью точек

Ну и какие тут интервалы? Понятно, что их три:

  1. Самый левый: $x \lt 1$ — сама единица в интервал не входит;
  2. Центральный: $1\le x \lt 5$ — вот тут единица в интервал входит, однако не входит пятёрка;
  3. Самый правый: $x\ge 5$ — пятёрка входит только сюда!

Я думаю, вы уже поняли закономерность. Каждый интервал включает в себя левый конец и не включает правый.

На первый взгляд, такая запись может показаться неудобной, нелогичной и вообще какой-то бредовой. Но поверьте: после небольшой тренировки вы обнаружите, что именно такой подход наиболее надёжен и при этом не мешает однозначно раскрывать модули. Лучше уж использовать такую схему, чем каждый раз думать: отдавать левый/правый конец в текущий интервал или «перекидывать» его в следующий.

На этом урок заканчивается. Скачивайте задачи для самостоятельного решения, тренируйтесь, сравнивайте с ответами — и увидимся в следующем уроке, который будет посвящён неравенствам с модулями.:)

А вычисляется в соответствии с такими правилами:

Для краткости записи применяют |а| . Так, |10| = 10; - 1 / 3 = | 1 / 3 |; | -100| =100 и т. д.

Всякой величине х соответствует достаточно точная величина |х |. И значит тождество у = |х | устанавливает у как некоторую функцию аргумента х .

График этой функции представлен ниже.

Для x > 0 |x | = x , а для x < 0 |x |= -x ; в связи с этим линия у = |x | при x > 0 совмещена с прямой у =х (биссектриса первого координатного угла), а при х < 0 - с прямой у = -х (биссектриса второго координатного угла).

Отдельные уравнения включают в себя неизвестные под знаком модуля .

Произвольные примеры таких уравнений - |х — 1| = 2, |6 — 2х | =3х + 1 и т. д.

Решение уравнений содержащих неизвестную под знаком модуля базируется на том, что если абсолютная величина неизвестного числа х равняется положительному числу а, то само это число х равняется или а, или -а.

Например :, если |х | = 10, то или х =10, или х = -10.

Рассмотрим решение отдельных уравнений .

Проанализируем решение уравнения |х - 1| = 2.

Раскроем модуль тогда разность х - 1 может равняться или + 2, или - 2. Если х - 1 = 2, то х = 3; если же х - 1 = - 2, то х = - 1. Делаем подставновку и получаем, что оба эти значения удовлетворяют уравнению.

Ответ. Указанное уравнение имеет два корня: x 1 = 3, x 2 = - 1.

Проанализируем решение уравнения | 6 — 2х | = 3х + 1.

После раскрытия модуля получаем: или 6 - 2х = 3х + 1, или 6 - 2х = - (3х + 1).

В первом случае х = 1, а во втором х = - 7.

Проверка. При х = 1 |6 — 2х | = |4| = 4, 3x + 1 = 4; от суда следует, х = 1 - корен ь данного уравнения .

При x = - 7 |6 — 2x | = |20| = 20, 3x + 1= - 20; так как 20 ≠ -20, то х = - 7 не является корнем данного уравнения.

Ответ. У уравнения единственный корень: х = 1.

Уравнения такого типа можно решать и графически .

Так решим, например , графически уравнение |х- 1| = 2.

Первоначально выполним построение графика функции у = |x — 1|. Первым начертим график функции у =х- 1:

Ту часть этого графика , которая расположена выше оси х менять не будем. Для нее х - 1 > 0 и потому |х -1|=х -1.

Часть графика, которая расположена под осью х , изобразим симметрично относительно этой оси. Поскольку для этой части х - 1 < 0 и соответственно |х - 1|= - (х - 1). Образовавшаяся в результате линия (сплошная линия) и будет графиком функции у = |х —1|.

Эта линия пересечется с прямой у = 2 в двух точках: M 1 с абсциссой -1 и М 2 с абсциссой 3. И, соответственно, у уравнения |х - 1| =2 будет два корня: х 1 = - 1, х 2 = 3.