Науки        04.10.2021   

Основные типы хромосом и их свойства. Хромосомы

Вопрос 1.
Впервые ядро было открыто и описано в 1833 году англичанином Р.Броуном.
Ядро - важнейшая составляющая часть клетки; выполняет функции хранения и воспроизведения генетической информации, регулирует процессы обмена веществ в клетке. Форма ядра может быть шаровидная, округлая, палочковидная и лопастная. Форма ядра зависит как от формы клетки, так и от функции, то есть чем активнее идут физиологические процессы в клетке, тем сложнее форма ядра. При увеличении объема ядра, увеличивается и объем цитоплазмы, и это соотношение называется ядерно-плазменным отношением и играет большую роль при делении клеток.
В состав ядра входят: ядерная оболочка (кариолемма), ядерный сок (кариоплазма), хроматин и ядрышки.
Ядерная оболочка имеет две мембраны - наружную, покрытую рибосомами, - гранулярную и внутреннюю гладкую. Она является частью внутренней мембранной сети клетки. В пространство между двумя мембранами ядерной оболочки открываются каналы ЭПС. Ядерная оболочка имеет поры диаметром до 80 нм, которые способны к избирательной проницаемости. Транспорт веществ через ядерную оболочку осуществляется по каналам ЭПС, через поры ядерной оболочки, а также путем образования вакуолей и отшнуровывания участков ядерной оболоч-ки. Ядерная оболочка образуется после завершения деления хромосом в телофазе митоза из прилегающих мембран ЭПС.
Кариоплазма (ядерный сок) - жидкая фаза ядра, в которой в растворенном виде находятся продукты жизнедеятельности ядерных структур - все виды РНК, рибосомальные белки, нуклеотиды, ферменты ядра, ионы. Ядерный сок обеспечивает нормальное функционирование генетического материала. Во время деления ядерный сок смешивается с цитоплазмой.
Вопрос 2.
Ядрышки – это округлые, сильно уплотненные, не ограниченные мембраной участки ядра. Форма их, размеры и количество зависит от функционального состояния ядра. В клетке, выполняющей функцию синтеза большого количества белка, в ядре будет несколько ядрышек или они будут крупные и рыхлые, т.е. функция ядрышка – это синтез р-РНК и сборка малой и большой субъединиц рибосом. В составе ядрышка находится: 80% белка, 10-15% РНК, небольшое количество ДНК и другие химические компоненты. В профазу деления клетки субъединицы рибосом через ядерные поры выходят в цитоплазму, ДНК ядрышка упаковывается на хромосомы, имеющие вторичную перетяжку или ядрышковый организатор, и соответственно, ядрышко как структура распадается и становится не видимой структурой, поэтому иногда говорят, что оно «растворяется».

Вопрос 3.
Хроматин – это комплекс ДНК и белков, в основном гистоновых. Молекулы гистонов с ДНК образуют группы – нуклеосомы. Каждая нуклеосома состоит из 8 молекул гистонов(Н 2А; Н 2B ; Н 3 ; Н 4) по две молекулы вокруг которых закручен участок ДНК. Молекула ДНК, соединенная с нуклеосомой, образует ДНП (дезоксирибонуклеопротеид) – это наименьшая единица хромосомы. В состав хроматина входят РНК, ионы Ca 2+ и Mg 2+ , а также фермент ДНК- полимераза, необходимый для репликации ДНК. Во время деления ядра хроматин спирализуется и становится видимым в световой микроскоп, т.е. начинают формироваться хромосомы (гр.chromo- цвет, soma- тело.) Если всю ДНК одной соматической клетки человека (46 хромосом) вытянуть в одну нить, то получится длина 164-174 см, т.е. хромосомы ядер представляют собой сильно спирализованную ДНП.
Перед делением клетки хроматин спирализуется, упаковывается и становится видимым.
При образовании хромосом существуют несколько упаковок хроматина.
Первая упаковка- это нуклеосомная организация в виде «бусин на нити». Размер нуклеосомы около 20 нм.
Вторая упаковка хроматина, когда нити ДНП сворачиваются вокруг себя засчет гистонового белка (Н 1)- это вторичная фибрилла диаметром около 20-30нм.
Третичный уровень упаковки - это хромонема (греч. chroma+nematos – окрашенная нить или струна), т.е. закрученные нити фибрилл уже толщиной 200-400 нм.
Четвертичная упаковка - это хроматида, т.е. пара скрученных хромонем диаметром около 1-2 мкм.
Хромосома это пара хроматид.
Материнская хроматида - это и есть дочерняя хромосома.
В хромосоме имеются эу- и гетерохроматиновые участки. Диффузный или деконденсированный хроматин – эухроматин – он генетически активен, т.к. с него может идти транскрипция. Конденсированные участки хроматина – гетерохроматин – это неактивные участки хромосом. Чередование эу- и гетерохроматиновых участков используют для идентификации хромосом.
Хромосома на стадии метафазы имеет вид нитей или палочек, максимально спирализованных и состоящих из двух хроматид, соединенных первичной перетяжкой или центромерой. В центральной части центромеры находятся кинетохоры, к которым во время митоза прикрепляются микротрубочки веретена деления. Некоторые хромосомы имеют вторичную перетяжку или ядрышковый организатор, контролирующий образование ядрышек.

Типы хромосом.

В зависимости от места расположения центромеры относительно плеч различают типы хромосом:
Равноплечие или метацентрические , когда центромер делит хромосому пополам, т.е. плечи равные или почти равные.
Неравноплечие или субметацентрические , т.е. плечи неодинаковоой длины.
Палочковидные или акроцентрические , когда одно плечо короткое или почти незаметное.
Некоторые виды могут иметь еще и одноплечие хромосомы или телоцентрические.
В кариотипе человека есть метацетрические, субметацентрические и акроцентрические хромосомы, а телоцентрические образуются только в результате мутаций.

Вопрос 4.
Хромосомный набор клеток тела (соматических клеток) несет так называемый двойной, или диплоидный набор хромосом. В этом наборе все хромосомы парные. Парные хромосомы носят название гомологичных; они совершенно одинаковы, несут гены, отвечающие за одни и те же признаки, и достались организму одна - от матери, другая - от отца.
При образовании половых клеток у каждого организма из каждой пары гомологичных хромосом в гамету (половую клетку) попадает только одна хромосома. Поэтому хромосомный набор половых клеток называют одинарным - гаплоидным. Например, в соматической клетке человека 46 хромосом - 23 пары, а в яйцеклетку или сперматозоид попадет только 23 хромосомы; у дрозофилы в клетках тела 8 хромосом - 4 пары, а в гаметах - 4 хромосомы.
При слиянии двух половых клеток происходит восстановление двойного набора хромосом, присущее данному виду.
Учёные выделяют следующие правила хромосом:
1. Постоянства числа хромосом. Каждый вид имеет постоянное число хромосом. Например: человек- 46, ясень обыкновенный – 46, дрозофила – 8, шимпанзе - 48, таракан – 48, сладкий перец - 48.
2. Парности хромосом. Хромосома имеет свою гомологичную пару, т.е. число хромосом четное. Например: у человека - 23 пары и т.д.
3. Индивидуальности. Каждая хромосома имеет свою форму, величину и совокупность генов.
4. Непрерывности или преемственности. Каждая хромосома образуется от хромосомы в результате репликации.

Вопрос 5.
Парные хромосомы называют гомологичными. Одна хромосома в паре происходит от материнского организма, другая - от отцовского. Хромосомы из разных пар называют негомологичными.

Вопрос 6.
В 1924 г. советский цитолог Г.А.Левитский предложил термин кариотип – это диплоидный набор хромосом соматической клетки, характеризующийся их числом, величиной и формой. Для того, чтобы легче было разобраться в сложном комплексе хромосом, составляющим кариотип их располагают в виде идиограммы. Такое составление предложено С.Г.Навашиным (от греч. своеобразный рисунок). Идиограмма – это расположение пар гомологичных хромосом по их убывающей величине.

Вопрос 7.
Хромосома прокариотической клетки имеет кольцевое или линейное троение, свободно расположена в цитоплазме и не отграничена ядерной оболочкой. Она одна, не имеет ядрышка, центромеры, вторичной перетяжки и вследствие этого характерных морфологических типов строения, свойственных хромосомам эукариотической клетки.

Хромосомы - самовоспроизводящиеся структуры клеточного ядра. Как у прокариотических, так и у эукариотических организмов гены располагаются группами на отдельных молекулах ДНК, которые при участии белков и других макромолекул клеток организуются в хромосомы. Зрелые клетки зародышевой линии (гаметы - яйцеклетки, спермии) многоклеточных организмов содержат по одному (гаплоидному) набору хромосом организма.

После того как к полюсам отойдут полные наборы хроматид, их называют хромосомами . Хромосомы - это структуры в ядре клеток эукариот, которые пространственно и функционально организовывают ДНК в геноме индивидуумов.

Химический состав хромосом. Хромосома представляет собой дезоксирибонуклеопротеид (ДНП), то есть комплекс, образованный из одной непрерывной двухцепочечной молекулы ДНК и белков (гистонов и негистонов). В состав хромосом входят также липиды и минеральные вещества (например, ионы Ca 2+ , Mg 2+).

Каждая хромосома – сложное надмолекулярное образование , сформированное в результате компактизации хроматина.

Строение хромосом. В большинстве случаев хромосомы хорошо видны лишь в делящихся клетках начиная со стадии метафазы, когда их можно видеть даже в световой микроскоп. В этот период удается определить количество хромосом в ядре, их размеры, форму и строение. Именно такие хромосомы называют метафазными. Интерфазные хромосомы часто называют просто хроматином .

Число хромосом обычно постоянно для всех клеток особи любого вида растений, животных и человека. Но у разных видов количество хромосом неодинаково (от двух до нескольких сотен). Наименьшее число хромосом имеет лошадиная аскарида, наибольшее встречается у простейших и папоротников, для которых характерны высокие уровни полиплоидии. Обычно диплоидные наборы содержат от одного до нескольких десятков хромосом.

Количество хромосом в ядре не связано с уровнем эволюционного развития живых организмов. У многих примитивных форм оно велико, например, в ядрах некоторых видов простейших содержатся сотни хромосом, тогда как у шимпанзе их всего только 48.

Каждая хромосома, образованная одной молекулой ДНК, представляет собой удлиненную палочковидную структуру – хроматиду , имеющую два «плеча», разделенных первичной перетяжкой, или центромерой. Метафазная хромосома состоит из двух соединенных центромерой сестринских хроматид, каждая из которых содержит одну молекулу ДНК, уложенную в виде спирали.

Центромера – это небольшое фибриллярное тельце, осуществляющее первичную перетяжку хромосомы. Она является важнейшей частью хромосомы, так как определяет ее движение. Центромеру, к которой прикрепляются нити веретена во время деления (при митозе и мейозе), называют кинетохором (от греч. kinetos – подвижный и choros – место). Он контролирует движение расходящихся хромосом при делении клетки. Хромосома, лишенная центромеры, не способна совершать упорядоченное движение и может потеряться.

Обычно центромера хромосомы занимает определенное место, и это является одним из видовых признаков, по которому различают хромосомы. Изменение положения центромеры в той или иной хромосоме служит показателем хромосомных перестроек. Плечи хромосом оканчиваются участками, не способными соединяться с другими хромосомами или их фрагментами. Эти концевые участки хромосом называют теломерами . Теломеры предохраняют концы хромосом от слипания и тем самым обеспечивают сохранение их целостности. За открытие механизма защиты хромосом теломерами и ферментом теломеразой американские ученые Э. Блекберн, К. Грейдер и Д. Шостак в 2009 году были удостоены Нобелевской премии в области медицины и физиологии. Концы хромосом нередко обогащены гетерохроматином.


В зависимости от расположения центромеры определяют три основных вида хромосом: равноплечие (плечи равной длины), неравноплечие (с плечами разной длины) и палочковидные (с одним, очень длинным и другим, очень коротким, едва заметным плечом). Некоторые хромосомы имеют не только одну центромеру, но еще и вторичную перетяжку, не связанную с прикреплением нити веретена при делении. Этот участок – ядрышковый организатор , выполняющий функцию синтеза ядрышка в ядре.

Репликация хромосом

Важным свойством хромосом является их способность к удвоению (самовоспроизведению). Обычно удвоение хромосом предшествует делению клетки. В основе удвоения хромосом лежит процесс репликации (от лат. replicatio – повторение) макромолекул ДНК, обеспечивающий точное копирование генетической информации и передачу ее от поколения к поколению. Удвоение хромосом – это сложный процесс, включающий в себя не только репликацию гигантских молекул ДНК, но также синтез связанных с ДНК хромосомных белков. Конечным этапом является упаковка ДНК и белков в особые комплексы, образующие хромосому. В результате репликации вместо одной материнской хромосомы появляются две идентичные ей дочерние хромосомы.

Функция хромосом заключается:

  • в хранении наследственной информации. Хромосомы являются носителями генетической информации;
  • передаче наследственной информации. Наследственная информация передается путем репликации молекулы ДНК;
  • реализации наследственной информации. Благодаря воспроизводству того или иного типа и-РНК и, соответственно, того или иного типа белка осуществляется контроль над всеми процессами жизнедеятельности клетки и всего организма.

Таким образом, хромосомы с заключенными в них генами обусловливают непрерывный ряд воспроизведения.

Хромосомы осуществляют сложную координацию и регуляцию процессов в клетке вследствие заключенной в них генетической информации, обеспечивающей синтез первичной структуры белков-ферментов.

У каждого вида в клетках находится определенное количество хромосом. Они являются носителями генов, определяющих наследственные свойства клеток и организмов вида. Ген – это участок молекулы ДНК хромосомы, на котором синтезируются различные молекулы РНК (трансляторы генетической информации).

В соматических, то есть телесных, клетках обычно содержится двойной, или диплоидный, набор хромосом. Он состоит из пар (2n) практически одинаковых по форме и размеру хромосом. Такие парные, похожие друг на друга хромосомные наборы называют гомологичными (от греч. homos – равный, одинаковый, общий). Они происходят от двух организмов; один набор от материнского, а другой – от отцовского. В таком парном наборе хромосом заключена вся генетическая информация клетки и организма (особи). Гомологичные хромосомы одинаковы по форме, длине, строению, расположению центромеры и несут одни и те же гены, имеющие одинаковую локализацию. Они содержат одинаковый набор генов, хотя и могут различаться их аллелями. Таким образом, гомологичные хромосомы содержат очень близкую, но не идентичную наследственную информацию.

Совокупность признаков хромосом (их число, размеры, форма и детали микроскопического строения) в клетках тела организма того или иного вида называют кариотипом. Форма хромосом, их число, размеры, расположение центромеры, наличие вторичных перетяжек всегда специфичны для каждого вида, по ним можно сопоставлять родство организмов и устанавливать их принадлежность к тому или иному виду.

Постоянство кариотипа, свойственное каждому виду, выработалось в процессе его эволюции и обусловлено закономерностями митоза и мейоза. Однако в процессе существования вида в его кариотипе вследствие мутаций могут произойти изменения хромосом. Некоторые мутации существенно изменяют наследственные качества клетки и организма в целом.

Постоянные характеристики хромосомного набора – количество и морфологические особенности хромосом, определяемые главным образом расположением центромер, наличием вторичных перетяжек, чередованием эухроматиновых и гетерохроматиновых участков и пр., позволяют идентифицировать виды. Поэтому кариотип называют «паспортом» вида .

Наиболее важной составной частью ядра являются хромосомы. Им принадлежит ведущая роль в наследственности. В момент деления клетки хромосомы хорошо видны в световой микроскоп. Хромосомы неделящихся ядер не видны, так как они деконденсированы. В то же время показано, что чем выше степень деконденсации хромосом, тем активнее протекают метаболические процессы в самом ядре. Морфологически хромосомы растений чаще всего имеют нитевидную или палочкообразную форму.

Большинство хромосом разделено первичной перетяжкой на два плеча. Под микроскопом первичная перетяжка представлена светлой (неокрашенной) зоной, получившей название центромеры. Она играет основную роль в перемещении хромосом при делении ядра. На каждой из хромосом центромера занимает строго определенное место. По положению центромеры хромосомы делятся на метацентри- ческие (приблизительно равноплечие), субметацентрические (неравноплечие), субакроцентрические , акроцентрические (головчатые) и телоцентрические , у которых центромера сдвинута к одному из концов (рис. 2.2).

Встречаются хромосомы, у которых имеется и вторичная перетяжка. Она, как правило, располагается у дистального конца хромосомы и отделяет небольшой ее участок, получивший название спутника. Вторичная перетяжка не участвует в движении хромосом при ядерном делении. Она получила название ядрышкового организатора, поскольку в этом месте происходит образование ядрышка. Концевые участки хромосом получили название теломерных. Теломерные концы хромосом препятствуют соединению одной хромосомы с другой.

Рис. 2.2.

слева направо - метацентрическая, суб- метацентрическая, субакроцентричес- кая, акроцентричсская, телоцентрическая (Levan, 1968)

одинаковыми буквами помечены гомологичные хромосомы (Любашев, 1967. - С. 9)

Рис. 2.3. Диплоидный набор метафазных хромосом в клетке Crepis capilaris (2л=6):

2.1. Число хромосом у некоторых видов растений

Число хромосом (2 n)

Пшеница мягкая (Triticum aestivum)

Пшеница твердая (Triticum durum)

Ячмень (Hordeum vulgare)

Рожь (Secale cereale)

Овес (Avena saliva)

Кукуруза (Zea mays)

Рис (Oryza sativa)

Горох (Pisum sativum)

Бобы конские (Vicia faba)

Соя (Glycine soya)

Арабидопсис (Arabidopsis thaliana)

Люпин узколистный (Lupinus angusti/olius)

Чечевица (Lens esculenta)

Лен (Linum usitatissimum)

Картофель (Solanum tuberosum)

Лук (Allium сера)

Свекла (Beta vulgaris)

Подсолнечник (Helianthus annuus)

Топинамбур (Helianthus tuberosus)

Салат латук (Lactuca sativa)

Томат (Lycopersicon esculentum)

Каждому из населяющих нашу планету видов растений и животных свойственно строго определенное число хромосом, обозначаемое 2п (табл. 2.1).

В половых клетках число хромосом в два раза меньше (гаплоидное число) и обозначается п. В соматических клетках организма каждая из хромосом имеет пару, идентичную как морфологически (рис. 2.3), так


Рис. 2.4.

(Giorgi, 1964, с добавлениями) и генетически. Исключение из этого правила у гетерогаметных особей составляют половые хромосомы.

Специфический для определенного вида по числу и структуре набор хромосом получил название кариотипа.

Рис. 2.6.

А - внешний вид: / - спутник, 2- вторичная перетяжка, 3 - центромера, 4 - волокно веретена; Б - внутреннее строение: 1 - две хромонемы

(а - большая и 6 - малая спирали) (Робертис, Новински, Саэрс; по Атабековой, Устиновой,1967. - С. 70)


Рис. 2.5. Дифференциально окрашенные хромосомы Т. durum

(фото любезно предоставлено ЕД.Бадаевой)

Графическое изображение кариотипа, показывающее его структурные особенности, называется идиограммои (рис. 2.4). В последние годы получил распространение метод дифференциального окрашивания хромосом. При его использовании на каждой из хромосом прокрашиваются специфические, характерные для нее гетерохроматиновые участки (бэнды), что значительно облегчает идентификацию отдельных хромосом кариотипа (рис. 2.5).

Хромосомы, по которым отличаются особи разного пола, получили название половых хромосом, а все остальные хромосомы - аутосом.

Внутреннее строение каждой хромосомы чрезвычайно сложно. По химическому составу хромосомы состоят из ДНК (до 40 %), РНК и белков, из которых в среднем около 60 % приходится на гистоны. Строение мета

фазной хромосомы при исследовании с помощью светового микроскопа представляется следующим образом (рис. 2.6).

Каждая хромосома состоит из двух хроматид, спирально закрученных и располагающихся параллельно оси хромосомы. Для прокрашивающихся в интерфазном ядре участков хромосом используют термин


Рис. 2.7.

1- нуклеосомный; 2- нуклеомерный; 3- хромомерный (петлевой домен); 4- хромо- немный; 5 - петлистых структур (Ченцов, 1995. - С. 129)

Рис. 2.8. Размеры хромосомных фибрилл (Russell, 1998; по Жнмулсву, 2002. - С. 309)

«хромонема» - красящаяся нить. Утолщения на хромонемах получили название хромомер. Особенность вышеописанного строения хромосом зависит от уровня компактизации хроматина (комплекс ДНК с гистонами), который меняется при переходе от интерфазного состояния хромосом к метафазному. Процесс компактизации хроматина проходит по Ченцову (1995) следующие уровни (рис. 2.7).

Первый, получивший название нуклеосомного , определяет скручивание ДНК по поверхности гистоновой сердцевины. Второй - объединение нескольких нуклеосом (до 10) в бусину -называется нуклео- мерным. Третий уровень - объединение скрепками из негистоновых белков фибрилл дезоксирибонуклеопротеида в петлевой домен, называемый хромомером. Четвертый уровень - это образование хромонем, которое происходит при сближении в линейном порядке хромомер, и образование толстой нити (0,1-0,2 мкм). Далее, по-видимому, хромонема укладывается в виде спирали в хроматиде, хотя весьма вероятно, что это еще один (пятый) уровень «петлистых структур». Размеры, которые приобретают хромосомные фибриллы в результате компактизации, представлены на рисунке 2.8.

Хромосомы эукариот

Центромера

Первичная перетяжка

X. п., в которой локализуется центромера и которая делит хромосому на плечи.

Вторичные перетяжки

Морфологический признак, позволяющий идентифицировать отдельные хромосомы в наборе. От первичной перетяжки отличаются отсутствием заметного угла между сегментами хромосомы. Вторичные перетяжки бывают короткими и длинными и локализуются в разных точках по длине хромосомы. У человека это 13, 14, 15, 21 и 22 хромосомы.

Типы строения хромосом

Различают четыре типа строения хромосом:

  • телоцентрические (палочковидные хромосомы с центромерой, расположенной на проксимальном конце);
  • акроцентрические (палочковидные хромосомы с очень коротким, почти незаметным вторым плечом);
  • субметацентрические (с плечами неравной длины, напоминающие по форме букву L);
  • метацентрические (V-образные хромосомы, обладающие плечами равной длины).

Тип хромосом является постоянным для каждой гомологичной хромосомы и может быть постоянным у всех представителей одного вида или рода .

Спутники (сателлиты)

Сателлит - это округлое или удлинённое тельце, отделённое от основной части хромосомы тонкой хроматиновой нитью, по диаметру равный или несколько меньший хромосоме. Хромосомы, обладающие спутником принято обозначать SAT-хромосомами. Форма, величина спутника и связывающей его нити постоянны для каждой хромосомы.

Зона ядрышка

Зоны ядрышка (организаторы ядрышка ) - специальные участки, с которыми связано появление некоторых вторичных перетяжек.

Хромонема

Хромонема - это спиральная структура, которую удаётся увидеть в декомпактизованных хромосомах через электронный микроскоп. Впервые наблюдалась Баранецким в 1880 году в хромосомах клеток пыльников традесканции , термин ввёл Вейдовский. Хромонема может состоять из двух, четырёх и более нитей, в зависимости от исследуемого объекта. Эти нити образуют спирали двух типов:

  • паранемическую (элементы спирали легко разъединить);
  • плектонемическую (нити плотно переплетаются).

Хромосомные перестройки

Нарушение структуры хромосом происходит в результате спонтанных или спровоцированных изменений (например, после облучения).

  • Генные (точковые) мутации (изменения на молекулярном уровне);
  • Аберрации (микроскопические изменения, различимые при помощи светового микроскопа):

Гигантские хромосомы

Такие хромосомы, для которых характерны огромные размеры, можно наблюдать в некоторых клетках на определённых стадиях клеточного цикла . Например, они обнаруживаются в клетках некоторых тканей личинок двукрылых насекомых (политенные хромосомы) и в ооцитах различных позвоночных и беспозвоночных (хромосомы типа ламповых щёток). Именно на препаратах гигантских хромосом удалось выявить признаки активности генов .

Политенные хромосомы

Впервые обнаружены Бальбиани в -го, однако их цитогенетическая роль была выявлена Костовым, Пайнтером, Гейтцем и Бауером. Содержатся в клетках слюнных желёз , кишечника , трахей , жирового тела и мальпигиевых сосудов личинок двукрылых .

Хромосомы типа ламповых щеток

Бактериальные хромосомы

Имеются данные о наличии у бактерий белков, связанных с ДНК нуклеоида , но гистонов у них не обнаружено.

Литература

  • Э. де Робертис, В. Новинский, Ф. Саэс Биология клетки. - M.: Мир, 1973. - С. 40-49.

См. также

Wikimedia Foundation . 2010 .

  • Хромченко Матвей Соломонович
  • Хроника

Смотреть что такое "Хромосомы" в других словарях:

    ХРОМОСОМЫ - (от хромо... и сома), органоиды клеточного ядра, являющиеся носителями генов и определяющие наследств, свойства клеток и организмов. Способны к самовоспроизведению, обладают структурной и функциональной индивидуальностью и сохраняют её в ряду… … Биологический энциклопедический словарь

    ХРОМОСОМЫ - [Словарь иностранных слов русского языка

    ХРОМОСОМЫ - (от хромо... и греч. soma тело) структурные элементы ядра клетки, содержащие ДНК, в которой заключена наследственная информация организма. В хромосомах в линейном порядке расположены гены. Самоудвоение и закономерное распределение хромосом по… … Большой Энциклопедический словарь

    ХРОМОСОМЫ - ХРОМОСОМЫ, структуры, несущие генетическую информацию об организме, которая содержится только в ядрах клеток ЭУКАРИОТОВ. Хромосомы нитеобразны, они состоят из ДНК и обладают специфическим набором ГЕНОВ. У каждого вида организмов есть характерное… … Научно-технический энциклопедический словарь

    Хромосомы - Структурные элементы ядра клетки, содержащие ДНК, в которой заключена наследственная информация организма. В хромосомах в линейном порядке расположены гены. В каждой клетке человска присутствует 46 хромосом, разделенных на 23 пары, из которых 22… … Большая психологическая энциклопедия

    Хромосомы - * храмасомы * chromosomes самовоспроизводящиеся элементы клеточного ядра, сохраняющие структурнофункциональную индивидуальность и окрашивающиеся основными красителями. Являются главными материальными носителями наследственной информации: генов… … Генетика. Энциклопедический словарь

    ХРОМОСОМЫ - ХРОМОСОМЫ, ом, ед. хромосома, ы, жен. (спец.). Постоянная составная часть ядра животных и растительных клеток, носители наследственной генетической информации. | прил. хромосомный, ая, ое. Х. набор клетки. Хромосомная теория наследственности.… … Толковый словарь Ожегова

    хромосомы - – структурные элементы клеточного ядра, содержащие гены, организованные в линейном порядке … Краткий словарь биохимических терминов

    ХРОМОСОМЫ - ХРОМОСОМЫ, важнейшая составная часть ядра, резко выявляющаяся в процессе кариокинеза благодаря своей способности интенсивно окрашиваться основными красками. Совокупность современных биол. данных заставляет рассматривать X. как носителей… … Большая медицинская энциклопедия

    Хромосомы - (от Хромо... и Сома органоиды клеточного ядра, совокупность которых определяет основные наследственные свойства клеток и организмов. Полный набор Х. в клетке, характерный для данного организма, называется Кариотипом. В любой клетке тела… … Большая советская энциклопедия

Генетический материал, содержащийся в клетке, образует структурно дифференцированные единицы, называемые хромосомами. Хромосомы представляют собой мультимолекулярные агрегаты, образованные преимущественно молекулами ДНК и белка и содержащие небольшое количество РНК, не являющейся, строго говоря, структурной частью хромосомы.

Строение хромосом хорошо видно на стадии мета-фазы митоза. Изучение хромосом позволило установить следующие факты:

1) во всех соматических клетках любого растительного или животного организма число хромосом одинаково;

2) в половых клетках содержится всегда вдвое меньше хромосом, чем в соматических клетках данного вида организмов;

3) у всех организмов, относящихся к одному виду, число хромосом в клетках одинаково (например, у человека в соматических клетках имеется 23 пары хромосом, а у голубя – 40).

Число хромосом в соматических клетках всегда четное, так как в них находятся по две одинаковых по форме и размерам хромосомы: одна от отцовского организма, а другая – от материнского. Хромосомный набор соматической клетки, в котором каждая хромосома имеет себе пару, носит название двойного или диплоидного. В половые клетки из каждой пары хромосом попадает только одна, поэтому хромосомный набор в этом случае называется одинарным или гаплоидным.

В определении формы хромосом большое значение имеет положение так называемой первичной перетяжки, или центромеры, – области, к которой во время митоза прикрепляются трубочки веретена. Центромера делит хромосому на два плеча. Расположение центромеры определяет три основных типа хромосом:

1) равноплечие – с плечами равной или почти равной длины;

2) неравноплечие, имеющие плечи неравной длины;

3) палочковидные – с одним длинным и вторым очень коротким, иногда с трудом обнаруживаемым плечом.

Непосредственным носителем наследственной информации в хромосомах является дезоксирибонуклеиновая кислота (ДНК) – биологический полимер, состоящий из двух полинуклеотидных цепей, соединенных друг с другом. Мономеры, составляющие каждую из цепей ДНК, представляют собой сложные органические соединения, включающие одно из четырех азотистых оснований: аденин (А), гуанин (Г), тимин (Т) или цитозин (Ц); сахар – дезоксирибозу, по имени которой получила название и сама ДНК, а также остаток фосфорной кислоты. Эти соединения носят название нуклеотидов (рис. 1).

Рис. 1. Схема строения нуклеотида

В каждой цепи нуклеотиды соединяются путем образования ковалентных связей между дезоксирибозой одного и остатком фосфорной кислоты последующего нуклеотида. Объединяются две цепи в одну молекулу с помощью водородных связей между азотистыми основаниями, входящими в состав нуклеотидов, образующих разные цепи. Количество таких связей между разными азотистыми основаниями неодинаково, и вследствие этого они могут соединяться только попарно: азотистое основание А одной цепи полинуклеотидов всегда связано двумя водородными связями с Т другой цепи, а Г – тремя водородными связями с азотистым основанием Ц противоположной полинуклеотидной цепочки. Такая способность к избирательному соединению нуклеотидов называется комплементарностью. Комплементарное взаимодействие нуклеотидов приводит к образованию пар нуклеотидов. В полинуклеотидной цепочке соседние нуклеотиды связаны между собой через сахар (дезоксирибозу) и остаток фосфорной кислоты.


В 1953 году американским биофизиком Дж. Уотсоном (род. 1928) совместно с английским биофизиком и генетиком Ф. Криком (род. 1916) была предложена модель пространственной структуры ДНК в виде двойной спирали.

Таким образом, в структурной организации молекулы ДНК можно выделить первичную структуру – полинуклеотидную цепь, вторичную структуру – две комплементарные друг другу и антипараллельные по-линуклеотидные цепи, соединенные водородными связями, и третичную структуру – трехмерную спираль. Диаметр спирали составляет 2 нм, длина шага – 3,4 нм. В каждый виток входит 10 пар нуклеотидов. Длина спирали молекулы ДНК зависит от организма, которому она принадлежит. ДНК простейших вирусов содержит несколько тысяч нуклеотидных пар, бактерий – несколько миллионов, а высших организмов – миллиарды. Если выстроить в одну линию все молекулы ДНК, заключенные в одной клетке человека, то получится нить длиной 2 м, т. е. ее длина в миллиард раз больше ее толщины.

Наследственная информация, записанная с помощью генетического кода, хранится в молекулах ДНК и размножается для того, чтобы обеспечить вновь образуемые клетки необходимыми «инструкциями» для их развития и функционирования. Вместе с тем непосредственного участия в жизнеобеспечении клеток ДНК не принимает. Роль посредника, функцией которого является перевод наследственной информации, хранящейся в ДНК, в рабочую форму, играют рибонуклеиновые кислоты (РНК).

В отличие от молекул ДНК рибонуклеиновые кислоты представлены одной полинуклеотидной цепью, которая состоит из четырех разновидностей нуклеотидов, содержащих сахар – рибозу (вместо дезоксирибозы), остаток фосфорной кислоты и одно из четырех азотистых оснований: аденин, гуанин, цитозин или урацил (вместо тимина). В цепочке РНК нуклеотиды соединяются путем образования ковалентных связей между рибозой одного нуклеотида и остатком фосфорной кислоты другого. РНК синтезируются на молекулах ДНК при помощи ферментов РНК-полимераз с соблюдением принципа комплементарности, причем аденину ДНК в РНК комплементарен урацил.

В зависимости от функции и местонахождения в клетке можно выделить три вида РНК: информационные (иРНК), транспортные (тРНК) и рибосомные (рРНК). Каждая из этих РНК синтезируется на определенном участке ДНК. Процесс синтеза информационной РНК, который называют транскрипцией – переписыванием информации, начинается с обнаружения РНК-полимеразой особого участка в молекуле ДНК, указывающего место начала транскрипции – промотора. После присоединения к промотору РНК-полимераза раскручивает прилежащий виток спирали ДНК. Две цепи ДНК в этом месте расходятся, и на одной из них фермент осуществляет синтез иРНК. Размер иРНК зависит от длины участка ДНК, на котором она была синтезирована. Молекулы иРНК могут состоять из 300-30 000 нуклеотидов.

В процессе синтеза, по мере продвижения РНК-полимеразы вдоль молекулы ДНК пройденные ею одно-цепочечные участки ДНК вновь объединяются в двойную спираль. Образуемая в ходе транскрипции иРНК содержит точную копию информации, записанной в соответствующем участке ДНК. Тройки рядом стоящих нуклеотидов иРНК, шифрующие аминокислоты, называются кодонами. Последовательность кодонов иРНК шифрует последовательность аминокислот в полипептидной цепи. Кодонам иРНК соответствуют определенные аминокислоты.