Литература        21.03.2024   

Вывод формулы симпсона. Старт в науке

Разобьем отрезок интегрирования [а , b ] на четное число n равных частей с шагом h . На каждом отрезке [х 0, х 2], [х 2, х 4],..., [x i-1, x i+1],..., [x n-2, x n] подынтегральную функцию f (х ) заменим интерполяционным многочленом второй степени:

Коэффициенты этих квадратных трехчленов можно найти из условий равенства многочлена в точках соответствующим табличным данным . В качестве можно принять интерполяционный многочлен Лагранжа второй степени, проходящий через точки :

Сумму элементарных площадей и (рис. 3.3) можно вычислить с помощью определенного интеграла. Учитывая равенства получаем

-

Рис. 3.3. Иллюстрация к методу Симпсона

Проведя такие вычисления для каждого элементарного отрезка , просуммируем полученные выражения:

Данное выражение для S принимается в качестве значения определенного интеграла:

(3.35)

Полученное соотношение называется формулой Симпсона или формулой парабол .

Эту формулу можно получить и другими способами, например двукратным применением метода трапеций при разбиениях отрезка [а , b ] на части с шагами h и 2h или комбинированием формул прямоугольников и трапеций (см. разд. 3.2.6).

Иногда формулу Симпсона записывают с применением полуцелых индексов. В этом случае число отрезков разбиения п произвольно (не обязательно четно), и формула Симпсона имеет вид

(3.36)

Легко видеть, что формула (3.36) совпадет с (3.35), если формулу (3.35) применить для числа отрезков разбиения 2n и шага h /2.

Пример . Вычислить по методу Симпсона интеграл

Значения функции при n = 10, h = 0.1 приведены в табл. 3.3. Применяя формулу (3.35), находим

Результат численного интегрирования с использованием метода Симпсона оказался совпадающим с точным значением (шесть значащих цифр).

Один из возможных алгоритмов вычисления определенного интеграла по методу Симпсона показан на рис. 3.4. В качестве исходных данных задаются границы отрезка интегрирования [а , b ],погрешность ε, а также формула для вычисления значений подынтегральной функции у = f (x ) .

Рис. 3.4. Алгоритм метода Симпсона

Первоначально отрезок разбивается на две части с шагом h =(b - a)/2. Вычисляется значение интеграла I 1. Потом число шагов удваивается, вычисляется значение I 2 с шагом h /2. Условие окончание счета принимается в виде . Если это условие не выполнено, происходит новое деление шага пополам и т.д.

Отметим, что представленный на рис. 3.4 алгоритм не является оптимальным: при вычислении каждого приближения I 2 не используются значения функции f (x ), уже найденные на предыдущем этапе. Более экономичные алгоритмы будут рассмотрены в разд. 3.2.7.

В этом методе предлагается подынтегральную функцию на частичном отрезке аппроксимировать параболой, проходящей через точки
(x j , f (x j )), где j = i -1; i -0.5; i , то есть подынтегральную функцию аппроксимируем интерполяционным многочленом Лагранжа второй степени:

Проведя интегрирование, получим:

Это и есть формула Симпсона или формула парабол. На отрезке
[a, b ] формула Симпсона примет вид

Графическое представление метода Симпсона показано на рис. 2.4.

Рис. 10.4. Метод Симпсона

Избавимся в выражении (2.16) от дробных индексов, переобозначив переменные:

Тогда формула Симпсона примет вид

Погрешность формулы (2.18) оценивается следующим выражением:

где h·n = b - a , . Таким образом, погрешность формулы Симпсона пропорциональна O (h 4 ).

Замечание. Следует отметить, что в формуле Симпсона отрезок интегрирования обязательно разбивается на четное число интервалов.

10.5. Вычисление определенных интегралов методами
Монте–Карло

Рассматриваемые ранее методы называются детерминированными , то есть лишенными элемента случайности.

Методы Монте–Карло (ММК) – это численные методы решения математических задач с помощью моделирования случайных величин. ММК позволяют успешно решать математические задачи, обусловленные вероятностными процессами. Более того, при решении задач, не связанных с какими-либо вероятностями, можно искусственно придумать вероятностную модель (и даже не одну), позволяющую решать эти задачи. Рассмотрим вычисление определенного интеграла

При вычислении этого интеграла по формуле прямоугольников интервал [a, b ] разбиваем на N одинаковых интервалов, в серединах которых вычислялись значения подынтегральной функции. Вычисляя значения функции в случайных узлах, можно получить более точный результат:

Здесь γ i - случайное число, равномерно распределенное на интервале
. Погрешность вычисления интеграла ММК ~ , что значительно больше, чем у ранее изученных детерминированных методов.

На рис. 2.5 представлена графическая реализация метода Монте-Карло вычисления однократного интеграла со случайными узлами (2.21) и (2.22).


(2.23)

Рис. 10.6. Интегрирование методом Монте-Карло (2-й случай)

Как видно на рис. 2.6, интегральная кривая лежит в единичном квадрате, и если мы сумеем получать пары случайных чисел, равномерно распределенных на интервале , то полученные значения (γ 1, γ 2) можно интерпретировать как координаты точки в единичном квадрате. Тогда, если этих пар чисел получено достаточно много, можно приблизительно считать, что
. Здесь S – число пар точек, попавших под кривую, а N – общее число пар чисел.

Пример 2.1. Вычислить следующий интеграл:

Поставленная задача была решена различными методами. Полученные результаты сведены в табл. 2.1.

Таблица 2.1

Замечание. Выбор табличного интеграла позволил нам сравнить погрешность каждого метода и выяснить влияние числа разбиений на точность вычислений.

11 ПРИБЛИЖЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ
И ТРАНСЦЕНДЕНТНЫХ УРАВНЕНИЙ

Кафедра «Высшей математики»

Выполнил: Матвеев Ф.И.

Проверила: Бурлова Л.В.

Улан-Удэ.2002

1.Численные методы интегрирования

2.Вывод формулы Симпсона

3.Геометрическая иллюстрация

4.Выбор шага интегрирования

5.Примеры

1. Численные методы интегрирования

Задача численного интегрирования заключается в вычислении интеграла

Посредством ряда значений подынтегральной функции .

Задачи численного интегрирования приходится решать для функций, заданных таблично, функцией, интегралы от которых не берутся в элементарных функциях, и т.д. Рассмотрим только функции одной переменной.

Вместо функции, которую требуется проинтегрировать, проинтегрируем интерполяционный многочлен. Методы, основанные на замене подынтегральной функции интерполяционным многочленом, позволяют по параметрам многочлена оценить точность результата или же по заданной точности подобрать эти параметры.

Численные методы условно можно сгруппировать по способу аппроксимации подынтегральной функции.

Методы Ньютона-Котеса основаны на аппроксимации функции полиномом степени . Алгоритм этого класса отличается только степенью полинома. Как правило, узлы аппроксимирующего полинома – равноотносящие.

Методы сплайн-интегрирования базируются на аппроксимации функции сплайном-кусочным полиномом.

В методах наивысшей алгебраической точности (метод Гаусса) используются специально выбранные неравноотносящие узлы, обеспечивающие минимальную погрешность интегрирования при заданном (выбранном) количестве узлов.

Методы Монте-Карло используются чаще всего при вычислении кратных интегралов, узлы выбираются случайным образом, ответ носит вероятностный характер.


суммарная погрешность

погрешность усечения

погрешность округления

Независимо от выбранного метода в процессе численного интегрирования необходимо вычислить приближенное значение интеграла и оценить погрешность. Погрешность уменьшается при увеличении n-количества

разбиений отрезка . Однако при этом возрастает погрешность округления

за счет суммирования значений интегралов, вычисленных на частичных отрезках.

Погрешность усечения зависит от свойств подынтегральной функции и длины частичного отрезка.

2. Вывод формулы Симпсона

Если для каждой пары отрезков построить многочлен второй степени, затем проинтегрировать его и воспользоваться свойством аддитивности интеграла, то получим формулу Симпсона.

Рассмотрим подынтегральную функцию на отрезке . Заменим эту подынтегральную функцию интерполяционным многочленом Лагранжа второй степени, совпадающим с в точках :

Проинтегрируем :

и называется формулой Симпсона.

Полученное для интеграла значение совпадает с площадью криволинейной трапеции, ограниченной осью , прямыми , и параболой, проходящей через точки

Оценим теперь погрешность интегрирования по формуле Симпсона. Будем считать, что у на отрезке существуют непрерывные производные . Составим разность

К каждому из этих двух интегралов уже можно применить теорему о среднем, поскольку непрерывна на и функция неотрицательна на первом интервале интегрирования и неположительна на втором (то есть не меняет знака на каждом из этих интервалов). Поэтому:

(мы воспользовались теоремой о среднем, поскольку - непрерывная функция; ).

Дифференцируя дважды и применяя затем теорему о среднем, получим для другое выражение:

, где

Из обеих оценок для следует, что формула Симпсона является точной для многочленов степени не выше третьей. Запишем формулу Симпсона, напрмер, в виде:

Если отрезок интегрирования слишком велик, то его разбивают на равных частей (полагая ), после чего к каждой паре соседних отрезков , ,..., применяют формулу Симпсона, именно:

Запишем формулу Симпсона в общем виде:

Погрешность формулы Симпсона - метода четвертого порядка:

, (3)

Так как метод Симпсона позволяет получить высокую точность, если не слишком велика. В противном случае метод второго порядка может дать большую точность.

Например, для функции форма трапеции при для дает точный результат , тогда как по формуле Симпсона получаем

3. Геометрическая иллюстрация


На отрезке длиной 2h строится парабола, проходящая через три точки ,. Площадь под параболой, заключенная между осью OX и прямыми, принимают равной интегралу.

Особенностью применения формулы Симпсона является тот факт, что число разбиений отрезка интегрирования - четное.

Если же количество отрезков разбиения - нечетное, то для первых трех отрезков следует применить формулу, использующую параболу третьей степени, проходящую через четыре первые точки, для аппроксимации подынтегральной функции.

(4)

Это формула Симпсона «трех восьмых».

Для произвольного отрезка интегрирования формула (4) может быть «продолжена»; при этом число частичных отрезков должно быть кратно трем ( точек).

, m=2,3,... (5)

Целая часть

Можно получить формулы Ньютона-Котеса старших порядков:

(6)

Количество отрезков разбиения;

Степень используемого полинома;

Производная -го порядка в точке ;

Шаг разбиения.

В таблице 1 выписаны коэффициенты . Каждая строка соответствует одному набору промежутков узлами для построения многочлена k-ой степени. Чтобы воспользоваться этой схемой для большего количества наборов (например, при k=2 и n=6), нужно «продолжить» коэффициенты, а затем сложить их.

Таблица 1:

Алгоритм оценки погрешности формул трапеции и Симпсона можно записать в виде: (7),

где - коэффициент, зависящий от метода интегрирования и свойств подынтегральной функции;

h - шаг интегрирования;

p - порядок метода.

Правило Рунге применяют для вычисления погрешности путем двойного просчета интеграла с шагами h и kh.

(8) - апостериорная оценка. Тогда Iуточн.= +Ro (9), уточненное значение интеграла .

Если порядок метода неизвестен, необходимо вычислить I в третий раз с шагом , то есть:

из системы трех уравнений:

с неизвестными I,А и p получаем:

Из (10) следует (11)

Таким образом, метод двойного просчета, использованный необходимое число раз, позволяет вычислить интеграл с заданной степенью точности. Выбор необходимого числа разбиений осуществляется автоматически. Можно при этом использовать многократное обращение к подпрограммам соответствующих методов интегрирования, не изменяя алгоритмов этих методов. Однако для методов, использующих равноотносящие узлы, удается модифицировать алгоритмы и уменьшить вдвое количество вычислений подынтегральной функции за счет использования интегральных сумм, накопленных при предыдущих кратных разбиениях интервала интегрирования. Два приближенных значения интеграла и, вычисляемые по методу трапеции с шагами и , связаны соотношением:

Аналогично, для интегралов, вычисленных по формуле с шагами и , справедливы соотношения:

,

(13)

4. Выбор шага интегрирования

Для выбора шага интегрирования можно воспользоваться выражением остаточного члена. Возьмем, например, остаточный член формулы Симпсона:

Если ê ê, то ê ê.

По заданной точности e метода интегрирования из последнего неравенства определяем подходящий шаг.

, .

Однако такой способ требует оценки (что на практике не всегда возможно). Поэтому пользуются другими приемами определения оценки точности, которые по ходу вычислений позволяют выбрать нужный шаг h.

Разберем один из таких приемов. Пусть

,

где - приближенное значение интеграла с шагом . Уменьшим шаг в два раза, разбив отрезок на две равные части и ().

Предположим теперь, что меняется не слишком быстро, так что почти постоянна: . Тогда и , откуда , то есть .

Отсюда можно сделать такой вывод: если , то есть если , , а - требуемая точность, то шаг подходит для вычисления интеграла с достаточной точностью. Если же , то расчет повторяют с шагом и затем сравнивают и и т.д. Это правило называется правилом Рунге.

Однако при применении правила Рунге необходимо учитывать величину погрешности вычислений: с уменьшением абсолютная погрешность вычислений интеграла увеличивается (зависимость от обратно пропорциональная) и при достаточно малых может оказаться больше погрешности метода. Если превышает , то для данного шага применять правило Рунге нельзя и желаемая точность не может быть достигнута. В таких случаях необходимо увеличивать значение .

При выводе правила Рунге вы существенно пользовались предположением, что . Если имеется только таблица значений , то проверку «на постоянство» можно сделать непосредственно по таблице Дальнейшее развитие приведенных алгоритмов позволяет перейти к адаптивным алгоритмам, в которых за счет выбора различного шага интегрирования в разных частях отрезка интегрирования в зависимости от свойств уменьшается количество вычислений подынтегральной функции.

Другая схема уточнения значений интеграла - процесс Эйтнена. Производится вычисление интеграла с шагами, причем . Вычисление значений . Тогда (14).

За меру точности метода Симпсона принимают величину:

5. Примеры

Пример 1. Вычислить интеграл по формуле Симпсона, если задана таблицей. Оценить погрешность.

Таблица 3.

Решение: Вычислим по формуле (1) при и интеграл .

По правилу Рунге получаем Принимаем .

Пример 2. Вычислить интеграл .

Решение: Имеем . Отсюда h==0.1. Результаты вычислений приведены в таблице 4.

Таблица 4.

Вычисление интеграла по формуле Симпсона

y0=1,00000; -0,329573ê£ 3.

Оценки для погрешности метода Симпсона: £ 0.0000017 для =0.1, £ 0.0000002 для =0.05.

Чтобы погрешность округления не искажала столь точный результат для формулы Симпсона, все вычисления проводились с шестью знаками после запятой.

Окончательные результаты:

При вычислении определенного интеграла не всегда получаем точное решение. Не всегда удается представление в виде элементарной функции. Формула Ньютона-Лейбница не подходит для вычисления, поэтому необходимо использовать методы численного интегрирования. Такой метод позволяет получать данные с высокой точностью. Метод Симпсона является таковым.

Для этого необходимо дать графическое представление выведению формулы. Далее идет запись оценки абсолютной погрешности при помощи метода Симпсона. В заключении произведем сравнение трех методов: Симпсона, прямоугольников, трапеций.

Метод парабол – суть, формула, оценка, погрешности, иллюстрации

Задана функция вида y = f (x) , имеющая непрерывность на интервале [ a ; b ] , необходимо произвести вычисление определенного интеграла ∫ a b f (x) d x

Необходимо разбить отрезок [ a ; b ] на n отрезков вида x 2 i - 2 ; x 2 i , i = 1 , 2 , . . . , n с длиной 2 h = b - a n и точками a = x 0 < x 2 < x 4 < . . . < x 2 π - 2 < x 2 π = b . Тогда точки x 2 i - 1 , i = 1 , 2 , . . . , n считаются серединами отрезков x 2 i - 2 ; x 2 i , i = 1 , 2 , . . . , n . Данный случай показывает, что определение узлов производится через x i = a + i · h , i = 0 , 1 , . . . , 2 n .

Каждый интервал x 2 i - 2 ; x 2 i , i = 1 , 2 , . . . , n подынтегральной функции приближен при помощи параболы, заданной y = a i x 2 + b i x + c i , проходящей через точки с координатами x 2 i - 2 ; f (x 2 i - 2) , x 2 i - 1 ; x 2 i - 1 , x 2 i ; f (x 2 i) . Поэтому метод и имеет такое название.

Данные действия выполняются для того, чтобы интеграл ∫ x 2 i - 2 x 2 i a i x 2 + b i x + c i d x взять в качестве приближенного значения ∫ x 2 i - 2 x 2 i f (x) d x . Можем вычислить при помощи формулы Ньютона-Лейбница. Это и есть суть метода парабол.Рассмотрим рисунок, приведенный ниже.

Графическая иллюстрация метода парабол (Симпсона)

При помощи красной линии изображается график функции y = f (x) , синей – приближение графика y = f (x) при помощи квадратичных парабол.

Исходя из пятого свойства определенного интеграла получаем ∫ a b f (x) d x = ∑ i = 1 n ∫ x 2 i - 2 x 2 i f (x) d x ≈ ∑ i = 1 n ∫ x 2 i - 2 x 2 i (a i x 2 + b i x + c i) d x

Для того чтобы получить формулу методом парабол, необходимо произвести вычисление:

∫ x 2 i - 2 x 2 i (a i x 2 + b i x + c i) d x

Пусть x 2 i - 2 = 0 . Рассмотрим рисунок, приведенный ниже.

Изобразим, что через точки с координатами x 2 i - 2 ; f (x 2 i - 2) , x 2 i - 1 ; x 2 i - 1 , x 2 i ; f (x 2 i) может проходить одна квадратичная парабола вида y = a i x 2 + b i x + c i . Иначе говоря, необходимо доказать, что коэффициенты могут определяться только единственным способом.

Имеем, что x 2 i - 2 ; f (x 2 i - 2) , x 2 i - 1 ; x 2 i - 1 , x 2 i ; f (x 2 i) являются точками параболы, тогда каждое из представленных уравнений является справедливым. Получаем, что

a i (x 2 i - 2) 2 + b i · x 2 i - 2 + c i = f (x 2 i - 2) a i (x 2 i - 1) 2 + b i · x 2 i - 1 + c i = f (x 2 i - 1) a i (x 2 i) 2 + b i · x 2 i + c i = f (x 2 i)

Полученная система разрешается относительно a i , b i , c i , где необходимо искать определитель матрицы по Вандермонду. Получаем, что

(x 2 i - 2) 2 x 2 i - 2 1 x 2 i - 1) 2 x 2 i - 1 1 (x 2 i) 2 x 2 i 1 , причем он считается отличным от нуля и не совпадает с точками x 2 i - 2 , x 2 i - 1 , x 2 i . Это признак того, что уравнение имеет только одно решение, тогда и выбранные коэффициенты a i ; b i ; c i могут определяться только единственным образом, тогда через точки x 2 i - 2 ; f (x 2 i - 2) , x 2 i - 1 ; x 2 i - 1 , x 2 i ; f (x 2 i) может проходить только одна парабола.

Можно переходить к нахождению интеграла ∫ x 2 i - 2 x 2 i (a i x 2 + b i x + c i) d x .

Видно, что

f (x 2 i - 2) = f (0) = a i · 0 2 + b i · 0 + c i = c i f (x 2 i - 1) = f (h) = a i · h 2 + b i · h + c i f (x 2 i) = f (0) = 4 a i · h 2 + 2 b i · h + c i

Для осуществления последнего перехода необходимо использовать неравенство вида

∫ x 2 i - 2 x 2 i (a i x 2 + b i x + c i) d x = ∫ 0 2 h (a i x 2 + b i x + c i) d x = = a i x 3 3 + b i x 2 2 + c i x 0 2 h = 8 a i h 3 3 + 2 b i h 2 + 2 c i h = = h 3 8 a i h 2 + 6 b i h + 6 c i = h 3 f x 2 i - 2 + 4 f 2 2 i - 1 + f x 2 i

Значит, получаем формулу, используя метод парабол:

∫ a b f (x) d x ≈ ∑ i = 1 n ∫ x 2 i - 2 x 2 i a i x 2 + b i x + c i d x = = ∑ i = 1 n h 3 (f (x 2 i - 2) + 4 f (x 2 i - 1) + f (x 2 i)) = = h 3 f (x 0) + 4 f (x 1) + f (x 2) + f (x 2) + 4 f (x 3) + f (x 4) + . . . + + f (x 2 n - 2) + 4 f (x 2 n - 1) + f (x 2 n) = = h 3 f (x 0) + 4 ∑ i = 1 n f (x 2 i - 1) + 2 ∑ i = 1 n - 1 f (x 2 i) + f (x 2 n)

Определение 1

Формула метода Симпсона имеет вид ∫ a b f (x) d x ≈ h 3 f (x 0) + 4 ∑ i = 1 n f (x 2 i - 1) + 2 ∑ i = 1 n - 1 f (x 2 i) + f (x 2 n) .

Формула оценки абсолютной погрешности имеет вид δ n ≤ m a x [ a ; b ] f (4) (x) · (b - a) 5 2880 n 4 .

Примеры приближенного вычисления определенных интегралов методом парабол

Метод Симпсона предполагает приближенное вычисление определенных интегралов. Чаще всего имеются два типа задач, для которых применим данный метод:

  • при приближенном вычислении определенного интеграла;
  • при нахождении приближенного значения с точностью δ n .

На точность вычисления влияет значение n , чем выше n , тем точнее промежуточные значения.

Пример 1

Вычислить определенный интеграл ∫ 0 5 x d x x 4 + 4 при помощи метода Симпсона, разбивая отрезок интегрирования на 5 частей.

Решение

По условию известно, что a = 0 ; b = 5 ; n = 5 , f (x) = x x 4 + 4 .

Тогда запишем формулу Симпсона в виде

∫ a b f (x) d x ≈ h 3 f (x 0) + 4 ∑ i = 1 n f (x 2 i - 1) + 2 ∑ i = 1 n - 1 f (x 2 i) + f (x 2 n)

Чтобы применить ее в полной мере, необходимо рассчитать шаг по формуле h = b - a 2 n , определить точки x i = a + i · h , i = 0 , 1 , . . . , 2 n и найти значения подынтегральной функции f (x i) , i = 0 , 1 , . . . , 2 n .

Промежуточные вычисления необходимо округлять до 5 знаков. Подставим значения и получим

h = b - a 2 n = 5 - 0 2 · 5 = 0 . 5

Найдем значение функции в точках

i = 0: x i = x 0 = a + i · h = 0 + 0 · 0 . 5 = 0 ⇒ f (x 0) = f (0) = 0 0 4 + 4 = 0 i = 1: x i = x 1 = a + i · h = 0 + 1 · 0 . 5 = 0 . 5 ⇒ f (x 1) = f (0 . 5) = 0 . 5 0 . 5 4 + 4 ≈ 0 . 12308 . . . i = 10: x i = x 10 = a + i · h = 0 + 10 · 0 . 5 = 5 ⇒ f (x 10) = f (5) = 5 5 4 + 4 ≈ 0 . 00795

Наглядность и удобство оформляется в таблице, приведенной ниже

i 0 1 2 3 4 5
x i 0 0 . 5 1 1 . 5 2 2 . 5
f x i 0 0 . 12308 0 . 2 0 . 16552 0 . 1 0 . 05806
i 6 7 8 9 10
x i 3 3 . 5 4 4 . 5 5
f x i 0 . 03529 0 . 02272 0 . 01538 0 . 01087 0 . 00795

Необходимо подставить результаты в формулу метода парабол:

∫ 0 5 x d x x 4 + 4 ≈ h 3 f (x 0) + 4 ∑ i = 1 n f (x 2 i - 1) + 2 ∑ i = 1 n - 1 f (x 2 i) + f (x 2 n) = = 0 . 5 3 0 + 4 · 0 . 12308 + 0 . 16552 + 0 . 05806 + + 0 . 02272 + 0 . 01087 + 2 · 0 . 2 + 0 . 1 + + 0 . 03529 + 0 . 01538 + 0 . 00795 ≈ ≈ 0 . 37171

Для вычисления мы выбрали определенный интеграл, который можно вычислить по Ньютону-Лейбницу. Получим:

∫ 0 5 x d x x 4 + 4 = 1 2 ∫ 0 5 d (x 2) x 2 2 + 4 = 1 4 a r c t g x 2 2 0 5 = 1 4 a r c t g 25 2 ≈ 0 . 37274

Ответ: Результаты совпадают до сотых.

Пример 2

Вычислить неопределенный интеграл ∫ 0 π sin 3 x 2 + 1 2 d x при помощи метода Симпсона с точностью до 0 , 001 .

Решение

По условию имеем, что а = 0 , b = π , f (x) = sin 3 x 2 + 1 2 , δ n ≤ 0 . 001 . Необходимо определить значение n . Для этого используется формула оценки абсолютной погрешности метода Симпсона вида δ n ≤ m a x [ a ; b ] f (4) (x) · (b - a) 5 2880 n 4 ≤ 0 . 001

Когда найдем значение n , то неравенство m a x [ a ; b ] f (4) (x) · (b - a) 5 2880 n 4 ≤ 0 . 001 будет выполняться. Тогда, применив метод парабол, погрешность при вычислении не превысит 0 . 001 . Последнее неравенство примет вид

n 4 ≥ m a x [ a ; b ] f (4) (x) · (b - a) 5 2 . 88

Теперь необходимо выяснить, какое наибольшее значение может принимать модуль четвертой производной.

f " (x) = sin 3 x 2 + 1 2 " = 3 2 cos 3 x 2 ⇒ f "" (x) = 3 2 cos 3 x 2 " = - 9 4 sin 3 x 2 ⇒ f " " " (x) = - 9 4 sin 3 x 2 " = - 27 8 cos 3 x 2 ⇒ f (4) (x) = - 27 8 cos 3 x 2 " = 81 16 sin 3 x 2

Область определения f (4) (x) = 81 16 sin 3 x 2 принадлежит интервалу - 81 16 ; 81 16 , а сам отрезок интегрирования [ 0 ; π) имеет точку экстремума, из этого следует, что m a x [ 0 ; π ] f (4) (x) = 81 16 .

Производим подстановку:

n 4 ≥ m a x [ a ; b ] f (4) (x) · (b - a) 5 2 . 88 ⇔ n 4 ≥ 81 16 · π - 0 5 2 . 88 ⇔ ⇔ n 4 > 537 . 9252 ⇔ n > 4 . 8159

Получили, что n – натуральное число, тогда его значение может быть равным n = 5 , 6 , 7 … для начала необходимо взять значение n = 5 .

Действия производить аналогично предыдущему примеру. Необходимо вычислить шаг. Для этого

h = b - a 2 n = π - 0 2 · 5 = π 10

Найдем узлы x i = a + i · h , i = 0 , 1 , . . . , 2 n , тогда значение подынтегральной функции будет иметь вид

i = 0: x i = x 0 = a + i · h = 0 + 0 · π 10 = 0 ⇒ f (x 0) = f (0) = sin 3 · 0 2 + 1 2 = 0 . 5 i = 1: x i = x 1 = a + i · h = 0 + 1 · π 10 = π 10 ⇒ f (x 1) = f (π 10) = sin 3 · π 10 2 + 1 2 ≈ 0 . 953990 . . . i = 10: x i = x 10 = a + i · h = 0 + 10 · π 10 = π ⇒ f (x 10) = f (π) = sin 3 · π 2 + 1 2 ≈ - 0 . 5 7 π 10

4 π 5 9 π 10 π f (x i) 1 . 207107 0 . 809017 0 . 343566 - 0 . 087785 - 0 . 391007 - 0 . 5

Осталось подставить значения в формулу решения методом парабол и получим

∫ 0 π sin 3 x 2 + 1 2 ≈ h 3 f (x 0) + 4 ∑ i = 1 n f (x 2 i - 1) + 2 ∑ i = 1 n - 1 f (x 2 i) + f (x 2 n) = = π 30 · 0 , 5 + 4 · 0 . 953990 + 1 . 487688 + 1 . 207107 + + 0 . 343566 - 0 . 391007 + 2 · 1 . 309017 + 1 . 451056 + + 0 . 809017 - 0 . 87785 - 0 . 5 = = 2 . 237650

Метод Симпсона позволяет нам получать приближенное значение определенного интеграла ∫ 0 π sin 3 x 2 + 1 2 d x ≈ 2 . 237 с точностью до 0 , 001 .

При вычислении формулой Ньютона-Лейбница получим в результате

∫ 0 π sin 3 x 2 + 1 2 d x = - 2 3 cos 3 x 2 + 1 2 x 0 π = = - 3 2 cos 3 π 2 + π 2 - - 2 3 cos 0 + 1 2 · 0 = π 2 + 2 3 ≈ 2 . 237463

Ответ: ∫ 0 π sin 3 x 2 + 1 2 d x ≈ 2 . 237

Замечание

В большинстве случаях нахождение m a x [ a ; b ] f (4) (x) проблематично. Поэтому применяется альтернатива – метод парабол. Его принцип подробно разъясняется в разделе метода трапеций. Метод парабол считается предпочтительным способом для разрешения интеграла. Вычислительная погрешность влияет на результат n . Чем меньше его значение, тем точнее приближенное искомое число.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Для построения формулы Симпсона предварительно рассмотрим такую задачу: вычислить площадь S криволинейной трапеции, ограниченной сверху графиком параболы y = Ax 2 + Bx + C, слева прямой х = - h, справа прямой x = h и снизу отрезком [-h; h]. Пусть парабола проходит через три точки (рис.8): D(-h; y 0) E(0; y 1) и F(h; y 2), причем х 2 - х 1 = х 1 - х 0 = h. Следовательно,

x 1 = x 0 + h = 0; x 2 = x 0 + 2h.

Тогда площадь S равна интегралу:

Выразим эту площадь через h, y 0 , y 1 и y 2 . Для этого вычислим коэффициенты параболы А, В, С. Из условия, что парабола проходит через точки D, E и F, имеем:

Решая эту систему, получаем: C = y 1 ; A =

Подставляя эти значения А и С в (3), получаем искомую площадь

Перейдем теперь к выводу формулы Симпсона для вычисления интеграла

Для этого отрезок интегрирования разобьем на 2n равных частей длиной

В точках деления (рис.4).а = х 0 , х 1 , х 2 , ...,х 2n-2 , x 2n-1 , x 2n = b,

Вчисляем значения подынтегральной функции f: y 0 , y 1 , y 2 , ...,y 2n-2 , y 2n-1 , y 2n , де y i = f(x i), x i = a + ih (i = 0, 1, 2,...,2n).

На отрезке подынтегральную функцию заменяем параболой, проходящей через точки (x 0 ; y 0), (x 1 ; y 1) и (x 2 ; y 2), и для вычисления приближенного значения интеграла от х 0 до х 2 воспользуемся формулой (4). Тогда (на рис. 4 заштрихованная площадь):

Аналогично находим:

................................................

Сложив полученные равенства, имеем:

Формула (5) называется обобщенной формулой Симпсона или формулой парабол , так как при ее выводе график подынтегральной функции на частичном отрезке длины 2h заменяется дугой параболы.

Задание на работу:

1. По указанию преподавателя или в соответствии с вариантом из Таблицы 4 заданий (см. Приложение) взять условия – подынтегральную функцию, пределы интегрирования.

2. Составить блок-схему программы и программу, которая должна:

Запросить точность вычисления определенного интеграла, нижний и верхний пределы интегрирования;

Вычислить заданный интеграл методами: для вариантов 1,4,7, 10… - правых, для вариантов 2,5,8,… - средних; для вариантов 2,5,8,… - левых прямоугольников. Вывести количество разбиений диапазона интегрирования, при котором достигнута заданная точность вычисления;

Вычислить заданный интеграл методом трапеций (для четных вариантов) и методом Симпсона (для нечетных вариантов).

Вывести количество разбиений диапазона интегрирования, при котором достигнута заданная точность вычисления;

Вывести значения контрольной функции для заданного значения аргумента и сравнить с вычисленными значениями интеграла. Сделать выводы.


Контрольные вопросы

1. Что такое определенный интеграл?

2. Почему наряду с аналитическими методами используются численные методы вычисления определенных интегралов.

3. В чем заключается сущность основных численных методов вычисления определенных интегралов.

4. Влияние количества разбиений на точность вычисления определенного интеграла численными методами.

5. Как вычислить интеграл любым методом с заданной точностью?