Математика        04.02.2022   

Удельное сопротивление проводника. Удельное электрическое сопротивление и проводимость

Как нам известно из закона Ома, ток на участке цепи находится в следующей зависимости: I=U/R . Закон был выведен в результате серии экспериментов немецким физиком Георгом Омом в XIX веке. Он заметил закономерность: сила тока на каком-либо участке цепи прямо зависит от напряжения, которое к этому участку приложено, и обратно - от его сопротивления.

Позже было установлено, что сопротивление участка зависит от его геометрических характеристик следующим образом: R=ρl/S ,

где l- длина проводника, S - площадь его поперечного сечения, а ρ - некий коэффициент пропорциональности.

Таким образом, сопротивление определяется геометрией проводника, а также таким параметром, как удельное сопротивление (далее - у. с.) - так назвали этот коэффициент. Если взять два проводника с одинаковым сечением и длиной и поставить их в цепь по очереди, то, измеряя силу тока и сопротивление, можно увидеть, что в двух случаях эти показатели будут разными. Таким образом, удельное электрическое сопротивление - это характеристика материала, из которого сделан проводник, а если быть еще более точным, то вещества.

Проводимость и сопротивление

У.с. показывает способность вещества препятствовать прохождению тока. Но в физике есть и обратная величина - проводимость. Она показывает способность проводить электрический ток. Выглядит она так:

σ=1/ρ, где ρ - это и есть удельное сопротивление вещества.

Если говорить о проводимости, то она определяется характеристиками носителей зарядов в этом веществе. Так, в металлах есть свободные электроны. На внешней оболочке их не больше трех, и атому выгоднее их "отдать", что и происходит при химических реакциях с веществами из правой части таблицы Менделеева. В ситуации же, когда мы располагаем чистым металлом, он имеет кристаллическую структуру, в которой эти наружные электроны общие. Они-то и переносят заряд, если приложить к металлу электрическое поле.

В растворах носителями заряда являются ионы.

Если говорить о таких веществах, как кремний, то по своим свойствам он является полупроводником и работает несколько по иному принципу, но об этом позже. А пока разберемся, чем же отличаются такие классы веществ, как:

  1. Проводники;
  2. Полупроводники;
  3. Диэлектрики.

Проводники и диэлектрики

Есть вещества, которые ток почти не проводят. Они называются диэлектриками. Такие вещества способны поляризоваться в электрическом поле, то есть их молекулы могут поворачиваться в этом поле в зависимости от того, как распределены в них электроны . Но поскольку электроны эти не являются свободными, а служат для связи между атомами, ток они не проводят.

Проводимость диэлектриков почти нулевая, хотя идеальных среди них нет (это такая же абстракция, как абсолютно черное тело или идеальный газ).

Условной границей понятия «проводник» является ρ<10^-5 Ом, а нижний порог такового у диэлектрика - 10^8 Ом.

Между этими двумя классами существуют вещества, называемые полупроводниками. Но выделение их в отдельную группу веществ связано не столько с их промежуточным состоянием в линейке «проводимость - сопротивление», сколько с особенностями этой проводимости в различных условиях.

Зависимость от факторов внешней среды

Проводимость - не совсем постоянная величина. Данные в таблицах, откуда берут ρ для расчетов, существуют для нормальных условий среды, то есть для температуры 20 градусов. В реальности для работы цепи сложно подобрать такие идеальные условия; фактически у.с. (а стало быть, и проводимость) зависят от следующих факторов:

  1. температура;
  2. давление;
  3. наличие магнитных полей;
  4. свет;
  5. агрегатное состояние.

Разные вещества имеют свой график изменения этого параметра в разных условиях. Так, ферромагнетики (железо и никель) увеличивают его при совпадении направления тока с направлением силовых линий магнитного поля. Что касается температуры, то зависимость здесь почти линейная (существует даже понятие температурного коэффициента сопротивления, и это тоже табличная величина). Но направление этой зависимости различно: у металлов оно повышается с повышением температуры, а у редкоземельных элементов и растворов электролитов увеличивается - и это в пределах одного агрегатного состояния.

У полупроводников зависимость от температуры не линейная, а гиперболическая и обратная: при повышении температуры их проводимость увеличивается. Это качественно отличает проводники от полупроводников. Вот так выглядит зависимость ρ от температуры у проводников:

Здесь представлены удельное сопротивление меди, платины и железа. Немного другой график у некоторых металлов, например, ртути - при понижении температуры до 4 К она теряет его почти полностью (такое явление называется сверхпроводимостью).

А для полупроводников эта зависимость будет примерно такая:

При переходе в жидкое состояние ρ металла увеличивается, а вот дальше все они ведут себя по-разному. Например, у расплавленного висмута оно ниже, чем при комнатной температуре, а у меди - в 10 раз выше нормального. Никель выходит из линейного графика еще при 400 градусах, после чего ρ падает.

Зато у вольфрама температурная зависимость настолько высока, что это становится причиной перегорания ламп накаливания. При включении ток нагревает спираль, и ее сопротивление увеличивается в несколько раз.

Также у. с. сплавов зависит от технологии их производства. Так, если мы имеем дело с простой механической смесью, то сопротивление такого вещества можно посчитать по среднему, а вот оно же у сплава замещения (это когда два и более элемента складываются в одну кристаллическую решетку) будет иным, как правило, куда большим. Например, нихром, из которого делают спирали для электроплиток, имеет такую цифру этого параметра, что этот проводник при включении в цепь греется до красноты (из-за чего, собственно, и используется).

Вот характеристика ρ углеродистых сталей:

Как видно, при приближении к температуре плавления оно стабилизируется.

Удельное сопротивление различных проводников

Как бы то ни было, а при расчетах используется ρ именно в нормальных условиях. Приведем таблицу, по которой можно сравнить эту характеристику у разных металлов:

Как видно из таблицы, лучший проводник - это серебро. И только его стоимость мешает массово применять его в производстве кабеля. У.с. алюминия тоже небольшое, но меньше, чем у золота. Из таблицы становится понятно, почему проводка в домах либо медная, либо алюминиевая.

В таблицу не включен никель, у которого, как мы уже сказали, немного необычный график зависимости у. с. от температуры. Удельное сопротивление никеля после повышения температуры до 400 градусов начинает не расти, а падать. Интересно он ведет себя и в других сплавах замещения. Вот так ведет себя сплав меди и никеля в зависимости от процентного соотношения того и другого:

А этот интересный график показывает сопротивление сплавов Цинк - магний:

В качестве материалов для изготовления реостатов используют высокоомные сплавы, вот их характеристики:

Это сложные сплавы, состоящие из железа, алюминия, хрома, марганца, никеля.

Что касается углеродистых сталей, то оно составляет примерно 1,7*10^-7 Ом · м.

Разница между у. с. различных проводников определяет и их применение. Так, медь и алюминий массово применяются при производстве кабеля, а золото и серебро - в качестве контактов в ряде радиотехнических изделий. Высокоомные проводники нашли свое место среди производителей электроприборов (точнее, они и создавались для этого).

Изменчивость этого параметра в зависимости от условий внешней среды легла в основу таких приборов, как датчики магнитного поля, терморезисторы, тензодатчики, фоторезисторы.

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает . Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии. Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Электрическое сопротивление

Электрическим сопротивлением проводника, которое обозначается латинской буквой r , называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.

На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а .

Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом . На схемах реостаты обозначаются как показано на рисунке 1, б . В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании. Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.

За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать "Сопротивление проводника равно 15 Ом", можно написать просто: r = 15 Ω.
1 000 Ом называется 1 килоом (1кОм, или 1кΩ),
1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).

При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

Видео 1. Сопротивление проводников

Удельное электрическое сопротивление

Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением и обозначается греческой буквой ρ (ро).

В таблице 1 даны удельные сопротивления некоторых проводников.

Таблица 1

Удельные сопротивления различных проводников

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников и железо.

Сопротивление проводника можно определить по формуле:

где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм².

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм².

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает .

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления и обозначается буквой α.

Если при температуре t 0 сопротивление проводника равно r 0 , а при температуре t равно r t , то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Таблица 2

Значения температурного коэффициента для некоторых металлов

Из формулы температурного коэффициента сопротивления определим r t :

r t = r 0 .

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

r t = r 0 = 100 (1 + 0,0066 × 200) = 232 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r , то проводимость определяется как 1/r . Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Если r = 20 Ом, то

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)

> Сопротивление и удельное сопротивление

Рассмотрите удельное электрическое сопротивление проводника . Узнайте о влиянии характеристик материала на эквивалентное и удельное сопротивление, резисторы.

Характеризуют степень, в которой объект или материал препятствуют потоку электрического тока.

Задача обучения

  • Выявить свойства материала, описываемые сопротивлением и удельным сопротивлением.

Основные пункты

  • Сопротивление объекта основывается на его форме и материале.
  • Удельное сопротивление (p) – неотъемлемое свойство материала и прямо пропорционально полному сопротивлению (R).
  • Сопротивление отличается в зависимости от материалов. Также и резисторы располагаются на много порядков.
  • Резисторы устанавливают последовательно или параллельно. Эквивалентное сопротивление сети резисторов отображает суммирование всего сопротивления.

Термины

  • Параллельное эквивалентное сопротивление – сопротивление сети, где каждый резистор подвергается той же разности напряжения, что и токи сквозь них. Тогда обратное эквивалентное сопротивление равно сумме обратного сопротивления всех резисторов в сети.
  • Эквивалентное сопротивление – сопротивление сети резисторов, установленных так, что напряжение по сети выступает суммой напряжения на каждом резисторе.
  • Удельное сопротивление – степень, в которой материал сопротивляется электрическому потоку.

Сопротивление и удельное сопротивление

Сопротивление – электрическое свойство, создающее препятствия течению. Перемещающийся по проводу ток напоминает воду, текущую в трубе, а падение напряжения – перепад давления. Сопротивление выступает пропорциональным давлению, которое нужно для формирования конкретного потока, а проводимость пропорциональна скорости потока. Проводимость и сопротивление выступают соотносимыми.

Сопротивление основывается на форме и материале объекта. Легче всего рассматривать цилиндрический резистор и уже от него переходить к сложным формам. Электрическое сопротивление цилиндра (R) будет прямо пропорциональным длине (L). Чем длиннее, тем больше столкновений будет происходить с атомами.

Единый цилиндр с длиной (L) и площадью поперечного сечения (А). Сопротивление потоку тока аналогично сопротивлению жидкости в трубе. Чем длиннее цилиндр, тем сильнее сопротивление. А вот с ростом площади поперечного сечения уменьшается сопротивление

Разные материалы гарантируют различное сопротивление. Определим удельное сопротивление (p) вещества так, чтобы сопротивление (R) было прямо пропорциональным p. Если удельное выступает неотъемлемым свойством, то простое сопротивление – внешнее.

Типичный осевой резистор

Что определяет удельное сопротивление проводника? Сопротивление в зависимости от материала может сильно отличаться. Например, у тефлона проводимость в 10 30 раз ниже, чем показатель меди. Откуда такое отличие? У металла наблюдается огромное количество делокализованных электронов, которые не задерживаются в конкретном месте, а свободно путешествуют на большие дистанции. Однако в изоляторе (тефлон) электроны тесно связаны с атомами и нужна серьезная сила, чтобы оторвать их. В некоторых керамических изоляторах можно встретить сопротивление больше 10 12 Ом. У сухого человека – 10 5 Ом.

Разность напряжения в сети отображает сумму всех напряжений и общее сопротивление передается формулой:

R eq = R 1 + R 2 + ⋯ + R N .

Резисторы в параллельной конфигурации проходят сквозь одинаковую разность напряжения. Поэтому можно вычислить эквивалентное сопротивление сети:

1/R eq = 1/R 1 + 1/R 2 + ⋯ + 1/R N .

Параллельное эквивалентное сопротивление можно представить в формуле двумя вертикальными линиями или слешем (//). Например:

Каждое сопротивление R задается как R/N. Резисторная сеть отображает комбинацию параллельных и последовательных соединений. Ее можно разбить на более мелкие составляющие.

Эту комбинированную схему можно разбить на последовательные и параллельные компоненты

Некоторые сложные сети нельзя рассмотреть таким способом. Но нестандартное значение сопротивления можно синтезировать, если объединить несколько стандартных показателей последовательно и параллельно. Это также можно использовать для получения сопротивления с более высокой номинальной мощностью, чем у отдельных резисторов. В конкретном случае все резисторы подключены последовательно или параллельно и номинал индивидуальных умножается на N.

Вещества и материалы, способные проводить электрический ток, называют проводниками. Остальные относят к диэлектрикам. Но чистых диэлектриков не бывает, все они тоже проводят ток, но его величина очень мала.

Но и проводники по-разному проводят ток. Согласно формуле Георга Ома, ток, протекающий через проводник, линейно пропорционален величине приложенного к нему напряжения, и обратно пропорционален величине, называемой сопротивлением.

Единицу измерения сопротивления назвали Омом в честь ученого, открывшего эту зависимость. Но выяснилось, что проводники, изготовленные из разных материалов и имеющие одинаковые геометрические размеры, обладают разным электрическим сопротивлением. Чтобы определить сопротивление проводника известного длины и сечения, ввели понятие удельного сопротивления — коэффициента, зависящего от материала.


В итоге сопротивление проводника известной длины и сечения будет равно


Удельное сопротивление применимо не только к твердым материалам, но и к жидкостям. Но его величина зависит еще и от примесей или других компонентов в исходном материале. Чистая вода не проводит электрический ток, являясь диэлектриком. Но в природе дистиллированной воды не бывает, в ней всегда встречаются соли, бактерии и другие примеси. Этот коктейль – проводник электрического тока, обладающий удельным сопротивлением.


Внедряя в металлы различные добавки, получают новые материалы – сплавы , удельное сопротивление которых отличается от того, что было у исходного материала, даже если добавка в него в процентном соотношении незначительна.

Зависимость удельного сопротивления от температуры

Удельные сопротивления материалов приводятся в справочниках для температуры, близкой к комнатной (20 °С). При увеличении температуры увеличивается сопротивление материала. Почему так происходит?

Электрического тока внутри материала проводят свободные электроны . Они под действием электрического поля отрываются от своих атомов и перемещаются между ними в направлении, заданным этим полем. Атомы вещества образуют кристаллическую решетку, между узлами которой и движется поток электронов, называемый еще «электронным газом». Под действием температуры узлы решетки (атомы) колеблются. Сами электроны тоже движутся не по прямой, а по запутанной траектории. При этом они часто сталкиваются с атомами, изменяя траекторию движения. В некоторые моменты времени электроны могут двигаться в сторону, обратную направлению электрического тока.

С увеличением температуры амплитуда колебаний атомов увеличивается. Соударение электронов с ними происходит чаще, движение потока электронов замедляется. Физически это выражается в увеличении удельного сопротивления.

Примером использования зависимости удельного сопротивления от температуры служит работа лампы накаливания. Вольфрамовая спираль, из которой сделана нить накала, в момент включения имеет малое удельное сопротивление. Бросок тока в момент включения быстро ее разогревает, удельное сопротивление увеличивается, а ток – уменьшается, становясь номинальным.

Тот же процесс происходит и с нагревательными элементами из нихрома. Поэтому и рассчитать их рабочий режим, определив длину нихромовой проволоки известного сечения для создания требуемого сопротивления, не получается. Для расчетов нужно удельное сопротивление нагретой проволоки, а в справочниках приведены значения для комнатной температуры. Поэтому итоговую длину спирали из нихрома подгоняют экспериментально. Расчетами же определяют примерную длину, а при подгонке понемногу укорачивают нить участок за участком.

Температурный коэффициент сопротивления

Но не во всех устройствах наличие зависимости удельного сопротивления проводников от температуры приносит пользу. В измерительной технике изменение сопротивления элементов схемы приводит к появлению погрешности.

Для количественного определения зависимости сопротивления материала от температуры введено понятие температурного коэффициента сопротивления (ТКС) . Он показывает, насколько изменяется сопротивление материала при изменении температуры на 1°С.

Для изготовления электронных компонентов – резисторов, используемых в схемах измерительной аппаратуры, применяются материалы с низким ТКС. Они стоят дороже, но зато параметры устройства не изменяются в широком диапазоне температур окружающей среды.

Но свойства материалов с высоким ТКС тоже используются. Работа некоторых датчиков температуры основана на изменении сопротивления материала, из которого изготовлен измерительный элемент. Для этого нужно поддерживать стабильное напряжение питания и измерять ток, проходящий через элемент. Откалибровав шкалу прибора, измеряющего ток, по образцовому термометру, получают электронный измеритель температуры. Этот принцип используется не только для измерений, но и для датчиков перегрева. Отключающих устройство при возникновении ненормальных режимов работы, приводящих к перегреву обмоток трансформаторов или силовых полупроводниковых элементов.

Используются в электротехнике и элементы, изменяющие свое сопротивление не от температуры окружающей среды, а от тока через них – терморезисторы . Пример их использования – системы размагничивания электронно-лучевых трубок телевизоров и мониторов. При подаче напряжения сопротивление резистора минимально, ток через него проходит в катушку размагничивания. Но этот же ток нагревает материал терморезистора. Его сопротивление увеличивается, уменьшая ток и напряжение на катушке. И так – до полного его исчезновения. В итоге на катушку подается синусоидальное напряжение с плавно уменьшающейся амплитудой, создающее в ее пространстве такое же магнитное поле. Результат – к моменту разогрева нити накала трубки она уже размагничена. А схема управления остается в запертом состоянии, пока аппарат не выключат. Тогда терморезисторы остынут и будут готовы к работе снова.

Явление сверхпроводимости

А что будет, если температуру материала уменьшать? Удельное сопротивление будет уменьшаться. Есть предел, до которого уменьшается температура, называемый абсолютным нулем . Это —273°С . Ниже этого предела температур не бывает. При этом значении удельное сопротивление любого проводника равно нулю.

При абсолютном нуле атомы кристаллической решетки перестают колебаться. В итоге электронное облако движется между узлами решетки, не соударяясь с ними. Сопротивление материала становится равным нулю, что открывает возможности для получения бесконечно больших токов в проводниках небольших сечений.

Явление сверхпроводимости открывает новые горизонты для развития электротехники. Но пока еще существуют сложности, связанные с получением в бытовых условиях сверхнизких температур, необходимых для создания этого эффекта. Когда проблемы будут решены, электротехника перейдет на новый уровень развития.

Примеры использования значений удельного сопротивления при расчетах

Мы уже познакомились с принципами расчета длины нихромовой проволоки для изготовления нагревательного элемента. Но есть и другие ситуации, когда необходимы знания удельных сопротивлений материалов.

Для расчета контуров заземляющих устройств используются коэффициенты, соответствующие типовым грунтам. Если же тип грунта в месте устройства контура заземления неизвестен, то для правильных расчетов предварительно измеряют его удельное сопротивление. Так результаты расчетов оказываются точнее, что исключает подгонку параметров контура при изготовлении: добавление числа электродов, приводящее к увеличению геометрических размеров заземляющего устройства.


Удельное сопротивление материалов, из которых изготовлены кабельные линии и шинопроводы, используется для расчетов их активного сопротивления. В дальнейшем при номинальном токе нагрузки с его помощью рассчитывается величина напряжения в конце линии . Если его величина окажется недостаточной, то заблаговременно увеличивают сечения токопроводов.

Электрическое сопротивление, выражаемое в омах, отличается от понятия «удельное сопротивление». Чтобы понять, что такое удельное сопротивление, надо связать его с физическими свойствами материала.

Об удельной проводимости и удельном сопротивлении

Поток электронов не перемещается беспрепятственно через материал. При постоянной температуре элементарные частицы качаются вокруг состояния покоя. Кроме того, электроны в зоне проводимости мешают друг другу взаимным отталкиванием из-за аналогичного заряда. Таким образом возникает сопротивление.

Удельная проводимость является собственной характеристикой материалов и количественно определяет легкость, с которой заряды могут двигаться, когда вещество подвергается воздействию электрического поля. Удельное сопротивление является обратной величиной и характеризуется степенью трудности, которую электроны встречают при своих перемещениях внутри материала, давая представление о том, насколько хорош или плох проводник.

Важно! Удельное электрическое сопротивление с высоким значением указывает на то, что материал плохо проводящий, а с низким значением – определяет хорошее проводящее вещество.

Удельная проводимость обозначается буквой σ и рассчитывается по формуле:

Удельное сопротивление ρ, как обратный показатель, можно найти так:

В этом выражении E является напряженностью создаваемого электрического поля (В/м), а J – плотностью электротока (А/м²). Тогда единица измерения ρ будет:

В/м х м²/А = ом м.

Для удельной проводимости σ единицей, в которой она измеряется, служит См/м или сименс на метр.

Типы материалов

В соответствии с удельным сопротивлением материалов, их можно классифицировать на несколько типов:

  1. Проводники. К ним относятся все металлы, сплавы, растворы, диссоциированные на ионы, а также термически возбужденные газы, включая плазму. Из неметаллов можно привести в пример графит;
  2. Полупроводники, фактически представляющие собой непроводящие материалы, кристаллические решетки которых целенаправленно легированы включением чужеродных атомов с большим или меньшим числом связанных электронов. В результате в структуре решетки образуются квазисвободные избыточные электроны или дырки, которые вносят вклад в проводимость тока;
  3. Диэлектрики или изоляторы диссоциированные – все материалы, которые в нормальных условиях не имеют свободных электронов.

Для транспортировки электрической энергии или в электроустановках бытового и промышленного назначения часто используемый материал – медь в виде одножильных или многожильных кабелей. Альтернативно применяется металл алюминий, хотя удельное сопротивление меди составляет 60% от такого же показателя для алюминия. Но он гораздо легче меди, что предопределило его использование в линиях электропередач сетей высокого напряжения. Золото в качестве проводника применяется в электроцепях специального назначения.

Интересно. Электропроводность чистой меди была принята Международной электротехнической комиссией в 1913 году в качестве стандарта по этой величине. Согласно определению, проводимость меди, измеренная при 20°, равна 0,58108 См/м. Это значение называется 100% LACS, а проводимость остальных материалов выражается как определенный процент LACS.

Большинство металлов имеют значение проводимости меньше 100% LACS. Однако есть исключения, такие как серебро или специальная медь с очень высокой проводимостью, обозначенные С-103 и С-110, соответственно.

Диэлектрики не проводят электричество и используются в качестве изоляторов. Примеры изоляторов:

  • стекло,
  • керамика,
  • пластмасса,
  • резина,
  • слюда,
  • воск,
  • бумага,
  • сухая древесина,
  • фарфор,
  • некоторые жиры для промышленного и электротехнического использования и бакелит.

Между тремя группами переходы являются текучими. Известно точно: абсолютно непроводящих сред и материалов нет. Например, воздух – изолятор при комнатной температуре, но в условиях мощного сигнала низкой частоты он может стать проводником.

Определение удельной проводимости

Если сравнивать удельное электрическое сопротивление различных веществ, требуются стандартизированные условия измерения:

  1. В случае жидкостей, плохих проводников и изоляторов, используют кубические образцы с длиной ребра 10 мм;
  2. Величины удельного сопротивления почв и геологических образований определяются на кубах с длиной каждого ребра 1 м;
  3. Проводимость раствора зависит от концентрации его ионов. Концентрированный раствор менее диссоциирован и имеет меньше носителей заряда, что снижает проводимость. По мере увеличения разведения увеличивается число ионных пар. Концентрация растворов устанавливается в 10%;
  4. Для определения удельного сопротивления металлических проводников используются провода метровой длины и сечения 1 мм².

Если материал, такой как металл, может обеспечить свободные электроны, то когда приложить разность потенциалов, по проводу потечет электрический ток. По мере увеличения напряжения большее количество электронов перемещается через вещество во временную единицу. Если все дополнительные параметры (температура, площадь поперечного сечения, длина и материал провода) неизменны, то отношение силы тока к приложенному напряжению тоже постоянно и именуется проводимостью:

Соответственно, электросопротивление будет:

Результат получается в ом.

В свою очередь, проводник может быть разных длины, размеров сечения и изготавливаться из различных материалов, от чего зависит значение R. Математически эта зависимость выглядит так:

Фактор материала учитывает коэффициент ρ.

Отсюда можно вывести формулу для удельного сопротивления:

Если значения S и l соответствуют заданным условиям сравнительного расчета удельного сопротивления, т. е. 1 мм² и 1 м, то ρ = R. При изменении габаритов проводника количество омов тоже меняется.

Удельное сопротивление и температура

Удельное сопротивление проводника является величиной, которая меняется с температурой, поэтому ее точно рассчитывают для показателя 20°. Если температура отличается, значение ρ необходимо отрегулировать на основе другого коэффициента, называемого температурным и обозначаемым α (единица – 1/°С). Это тоже характерное значение для каждого материала.

Модифицированный коэффициент рассчитывается на основе значений ρ, α и отклонения температуры от 20 ° Δt:

ρ1 = ρ х (1 + α х Δt).

Если до этого сопротивление было известно, то можно напрямую произвести его расчет:

R1 = R x (1 + α х Δt).

Практическое использование различных материалов в электротехнике напрямую зависит от их удельного сопротивления.

Видео