Техника        03.12.2021   

Космические аппараты в точках лагранжа системы земля-луна. Точки Лагранжа и расстояние между ними

Что это за «точки», чем они привлекательны в космических проектах и есть ли практика их использования? С этими вопросами редколлегия портала «Планета Королева» обратилась к доктору технических наук Юрию Петровичу Улыбышеву.

Проводит интервью Волков Олег Николаевич, заместитель руководителя проекта «Великое начало».

Волков О.Н.: В гостях интернет портала «Планета Королева заместитель руководителя научно-технического центра ракетно-космической корпорации «Энергия», начальник отдела космической баллистики, доктор технических наук Юрий Петрович Улыбышев. Юрий Петрович, добрый день!

.: Добрый день.

В.: Существование на околоземной орбите пилотируемых комплексов это не диковинка. Это обычное, привычное дело. В последнее время в международном космическом сообществе проявляется интерес к другим космическим проектам, в которых предполагается размещать космические комплексы, в том числе, и пилотируемые в, так называемых, точках Лагранжа. Среди них проект посещаемых космических станций, проект станций, размещаемых для поиска опасных астероидов и слежения Луны.

Что такое точки Лагранжа? В чем их существо с точки зрения небесной механики? Какова история теоретических исследований по данному вопросу? Каковы основные результаты исследований?

У. : В нашей солнечной системе имеется большое количество природных эффектов, связанных с движением Земли, Луны, планет. К ним относятся и, так называемые, точки Лагранжа. В научной литературе их чаще даже называют точками либрации. Чтобы объяснить физическую суть этого явления, для начала рассмотрим простую систему. Есть Земля, и вокруг нее по круговой орбите летает Луна. Ничего больше в природе нет. Это, так называемая, ограниченная задача трех тел. И вот в этой задаче мы рассмотрим космический аппарат и его возможное движение.

Самое первое, что приходит на ум рассмотреть: а что будет, если космический аппарат находится на линии, соединяющей Землю и Луну. Если мы будем двигаться по этой линии, то у нас есть два гравитационных ускорения: притяжение Земли, притяжение Луны, и плюс есть центростремительное ускорение за счет того, что эта линия постоянно вращается. Очевидно, что в какой-то точке все эти три ускорения вследствие того, что они разнонаправлены и лежат на одной линии, могут обнулиться, т.е. это будет точка равновесия. Вот такую точку и называют точкой Лагранжа, либо либрационной точкой. На самом деле таких точек пять: три из них находятся на вращающейся линии, соединяющей Землю и Луну, их называют коллинеарными точками либрации. Первая, которую мы с вами разобрали, обозначают L 1, вторая находится за Луной - L 2, и третья коллинеарная точка - L 3 находится с обратной стороны Земли по отношению к Луне. Т.е. на этой линии, но в противоположном направлении. Это первые три точки.

Есть еще две точки, которые находятся с двух сторон вне этой линии. Их называют треугольными точками либрации. Все эти точки показаны на этом рисунке (Рис.1). Вот такая идеализированная картинка.



Рис.1.

Теперь, если мы поместим в любую из этих точек космический аппарат, то в рамках вот такой простой системы он всегда там и останется. Если мы чуть – чуть отклонимся от этих точек, то в их окрестности могут существовать периодические орбиты, их называют еще гало-орбитами (см. Рис.2), и космический аппарат сможет двигаться вокруг этой точки по вот таким своеобразным орбитам. Если говорить о точках либрации L 1, L 2 системы Земля – Луна, то период движения по этим орбитам будет порядка 12 - 14 суток, и они могу быть выбраны совершенно разным образом.



Рис.2.

На самом деле, если мы вернемся к реальной жизни и рассмотрим вот эту задачу уже в точной постановке, то все окажется гораздо сложнее. Т.е. космический аппарат не может находиться очень долго, больше, скажем, одного периода, в движении по такой вот орбите, не может оставаться на ней, за счет того, что:

Во-первых, орбита Луны вокруг Земли не является круговой – она имеет небольшую эллиптичность;

Кроме того, на космический аппарат будет действовать притяжение Солнца, давление солнечного света.

В итоге космический аппарат не сможет оставаться на такой орбите. Поэтому, с точки зрения реализации космического полета по подобным орбитам, необходимо выведение космического аппарата на соответствующую гало-орбиту и затем периодическое проведение маневров по ее поддержанию.

По меркам межпланетных полетов затраты топлива на поддержание для таких орбит достаточно малы, не больше 50 – 80 м/сек в год. Для сравнения могу сказать, поддержание орбиты геостационарного спутника в год это тоже 50 м/сек. Там мы удерживаем геостационарный спутник около неподвижной точки - эта задача гораздо проще. Здесь мы должны удерживать космический аппарат в окрестности вот такой гало-орбиты. В принципе, практически эта задача реализуема. Более того, она реализуема с использованием двигателей малой тяги, и каждый маневр это доля метра или единицы м/сек. Отсюда напрашивается возможность использования орбит в окрестности этих точек для космических полетов, в том числе, пилотируемых.

Теперь, с точки зрения, а почему они выгодны, и чем они интересны, именно, для практической космонавтики?

Если вы все помните, американский проект « APOLLO », в котором использовалась окололунная орбита, с которой спускался аппарат, приземлялся на поверхность Луны, через некоторое время возвращался на окололунную орбиту и затем летел к Земле. Окололунные орбиты представляют определенный интерес, но они не всегда удобны для пилотируемой космонавтики. У нас могут быть различные нештатные ситуации, кроме того естественно желание изучать Луну не только в окрестности какого-то района, а вообще изучать всю Луну. В итоге оказывается, что использование окололунных орбит связано с рядом ограничений. Ограничения накладываются на даты старта, на даты возврата с окололунной орбиты. Параметры окололунных орбит могут зависеть от располагаемой энергетики. Скажем, полярные районы могут быть недоступны. Но самый главный, наверное, аргумент в пользу космических станций в окрестностях точек либрации заключается в том, что:

Первое, мы можем стартовать с Земли в любой момент времени;

Если станция находится в точке либрации, и космонавты должны лететь на Луну, они могут из точки либрации, вернее с гало-орбиты, лететь в любую точку на поверхности Луны;

Теперь, когда экипаж прилетел: с точки зрения пилотируемой космонавтики, очень важно обеспечение возможности быстрого возврата экипажа в случае каких-то нештатных ситуаций, болезней членов экипажа и т.п. Если мы говорим про окололунную орбиту, нам может понадобиться ожидание, допустим, времени старта 2 недели, а здесь мы можем стартовать в любой момент времени – с Луны до станции в точку либрации и затем к Земле, либо, в принципе, сразу к Земле. Такие преимущества достаточно явным образом видны.

Имеются варианты использования: L1 или L2. Есть определенные различия. Как вы знаете, Луна повернута к нам всегда одной и той же стороной, т.е. период ее собственного вращения равен периоду ее движения вокруг Земли. В итоге, обратная сторона Луны никогда не видна с Земли. В этом случае можно выбрать гало-орбиту такую, что она всегда будет находиться на линии видимости с Землей и иметь возможность осуществления связи, наблюдений и еще каких-то экспериментов, связанных с обратной стороной Луны. Таким образом, космические станции, размещенные в точке либо в точке L1, либо в точке L2, для пилотируемой космонавтики могут иметь определенные преимущества. Кроме того, интересным является то, что между гало-орбитами точек L1 или L2 можно осуществить, так называемый, низкоэнергетический перелет, буквально, 10 м/сек, и мы перелетим с одной гало-орбиты на другую.

В.: Юрий Петрович, у меня вопрос: точка L1 находится на линии между Луной и Землей, и, как я понимаю, с точки зрения обеспечения связи между космической станцией и Землей, более удобна. Вы говорили, что L2, точка, которая находится за Луной, тоже представляет интерес для практической космонавтики. А как обеспечить связь с Землей, если станция будет находиться в точке L2?

У .: Любая станция, находясь на орбите в окрестностях точки L1, имеет возможность непрерывной связи с Землей, любая гало-орбита. Для точки L2 несколько сложнее. Это связано с тем, что космическая станция при движении по гало-орбите может оказаться по отношению к Земле, как бы, в тени Луны, и связь тогда невозможна. Но можно построить такую гало-орбиту, которая всегда будет иметь возможность связи с Землей. Это специально выбранная орбита.

В.: Это несложно сделать?

У. : Да, можно сделать, и, так как ничто не удается сделать бесплатно, потребуется несколько большего расхода топлива. Скажем, вместо 50 м/сек будет 100 м/сек. Наверное, это не самый критичный вопрос.

В.: Еще один уточняющий вопрос. Вы говорили, что энергетически легко перелететь из точки L1 в точку L2, и обратно. Правильно я понимаю, что не имеет смысла создавать две станции в районе Луны, а достаточно иметь одну станцию, которая энергетически легко переходит в другую точку?

У. : Да, кстати говоря, наши партнеры по международной космической станции предлагают один из вариантов для обсуждения развития проекта МКС в виде космической станции с возможностью перелета от точки L1 в точку L2, и обратно. Это вполне реализуемо и обозримо по времени перелета (скажем, 2 недели) и может быть использовано для пилотируемой космонавтики.

Еще я хотел сказать, что на практике полеты по гало-орбитам в настоящее время были реализованы американцами по проекту ARTEMIS . Это примерно 2-3 года назад. Там два космических аппарата летали в окрестностях точек L1 и L2 с поддержанием соответствующих орбит. Один аппарат совершил перелет из точки L2 в точку L1. Вся эта технология на практике реализована. Конечно, хотелось, чтобы это сделали мы.

В.: Ну, у нас еще все впереди. Юрий Петрович, следующий вопрос. Как я понял из Ваших рассуждений, любая космическая система, состоящая из двух планет, имеет точки Лагранжа, или точки либрации. Существуют такие точки для системы Солнце – Земля, и в чем привлекательность этих точек?

У. : Да, конечно, совершенно правильно. В системе Земля – Солнце имеются тоже точки либрации. Их тоже пять. В отличие от окололунных точек либрации полет в тех точках может быть привлекателен уже для совсем других задач. Если говорить конкретно, то наибольший интерес представляют точки L1 и L2. Т.е. точка L1 по направлению от Земли к Солнцу, а точка L2 в противоположном направлении на линии, соединяющей Землю и Солнце.

Так вот, первый полет в точку L1 в системе Солнце - Земля был осуществлен в 1978 году. С тех пор было реализовано несколько космических миссий. Основной лейтмотив таких проектов был связан с наблюдением за Солнцем: за солнечным ветром, за солнечной активностью, в том числе. Есть системы, которые используют предупреждение о каких-то активных процессах на Солнце, влияющих на Землю: на наш климат, на самочувствие людей и т.д. Это то, что касается точки L1. Она в первую очередь интересна человечеству возможностью наблюдения за Солнцем, за его активностью и за процессами, которые проходят на Солнце.

Теперь точка L2. Точка L2 тоже интересна и, в первую очередь, для астрофизики. И связано это с тем, что космический аппарат, размещенный в окрестностях этой точки, может использовать, например, радиотелескоп, который будет экранирован от излучения со стороны Солнца. Он будет направлен противоположно от Земли и Солнца и может позволить проводить более чисто астрофизические наблюдения. Они не зашумлены Солнцем, ни какими-то отраженными излучениями со стороны Земли. И еще интересно, т.к. мы движемся вокруг Солнца, за 365 дней делаем полный оборот, то подобным радиотелескопом можно рассмотреть любое направление вселенной. Такие проекты тоже есть. Вот сейчас у нас в Физическом институте Российской Академии Наук разрабатывается такой проект «Миллиметрон». В этой точке тоже ряд миссий был реализован, и космические аппараты летают.

В.: Юрий Петрович, с точки зрения поиска опасных астероидов, которые могут угрожать Земле, в какой точке надо размещать космические аппараты, чтобы они следили за опасными астероидами?

У. : Вообще-то, такого прямого, очевидного ответа на этот вопрос, мне кажется, нет. Почему? Потому что движущиеся астероиды по отношению к солнечной системе, как бы, группируются в ряд семейств, у них совершенно разные орбиты и, по моему мнению, можно в окололунной точке поместить аппарат для одного типа астероидов. То, что касается точек либрации системы Солнце - Земля, также можно посмотреть. Но такого очевидного, прямого ответа: «такая-то точка в такой-то системе» - мне кажется, трудно дать. Но, в принципе, точки либрации могут быть привлекательны для защиты Земли.

В.: Правильно я понимаю, солнечная система имеет еще много интересных мест, не только Земля – Луна, Земля – Солнце. А какие еще интересные места солнечной системы можно использовать в космических проектах?

У. : Дело в том, что в солнечной системе в том виде, в каком она существует, помимо эффекта, связанного с точками либрации, существует еще ряд таких эффектов, связанный с взаимным движением тел в солнечной системе: и Земли, и планет, и т.д. У нас в России я, к сожалению, не знаю работ на эту тему, а вот, в первую очередь, американцы и европейцы выявили, что в солнечной системе существуют, так называемые, низкоэнергетические перелеты (причем, эти исследования - достаточно сложные и в математическом плане работы, и в плане вычислительном – они требуют больших вычислительных суперкомпьютеров).

Вот, к примеру, возвращаемся к точке L1 системы Земля - Луна. По отношению к этой точке можно построить (это привлекательно для автоматических аппаратов) перелеты по всей солнечной системе, давая небольшие, по меркам межпланетных полетов, импульсы порядка нескольких сотен м/сек. И тогда этот космический аппарат начнет медленное движение. При этом можно построить траекторию таким образом, что она обойдет ряд планет.

В отличие от прямых межпланетных перелетов это будет длительный процесс. Поэтому, для пилотируемой космонавтики он не очень подходит. А для автоматических аппаратов он очень может быть очень привлекательным.

Вот на картинке (Рис.3) показана иллюстрация этих перелетов. Траектории, как бы, зацепляются друг за друга. Переход с гало-орбиты с L1 в L2. Он сто ит достаточно немного. Вот там - то же самое. Мы как бы скользим по этому тоннелю, и в месте зацепления или близком к зацеплению с другим тоннелем мы даем небольшой маневр и перелетаем, идем к другой планете. Вообще, очень интересное направление. Оно называется « Superhighway » (по крайней мере, американцы используют такой термин).



Рис.3.
(рисунок из зарубежных публикаций)

Практическая реализация частично была сделана американцами в рамках проекта GENESIS . Сейчас они тоже в этом направлении работают. Мне кажется, это одно из наиболее перспективных таких направлений в развитии космонавтики. Потому что все-таки с теми двигателями, «движителями», которые у нас имеются в настоящее время, я имею в виду двигатели большой тяги и двигатели электрореактивные (которые пока имеют очень маленькую тягу и требуют большую энергию), мы сдвинуться в плане освоения солнечной системы или дальнейшего изучения сильно не можем. А вот такие многолетние или даже десятилетние задачи перелета могут быть для исследований очень интересны. Так же, как Вояджер. Он летал, кажется, с 1978 года или 1982 (с 1977 года – ред.) , сейчас ушел за пределы солнечной системы. Это направление очень сложно. Во-первых, сложно в математическом плане. Кроме того, здесь анализ и расчеты по механике перелетов требуют высоких ресурсов компьютеров, т.е. на персональном компьютере это сомнительно обсчитать, нужно использовать суперкомпьютеры.

В.: Юрий Петрович, можно систему низкоэнергетичных переходов использовать для организации космического солнечного патруля – постоянной системы мониторинга солнечной системы с имеющимися ограничениями по топливу, которые у нас есть?

У. : Даже между Землей и Луной, а также, допустим, между Землей и Марсом, Землей и Венерой существуют, так называемые квазипериодические траектории. Подобно тому, как мы разбирали гало-орбиту, которая в идеальной задаче без возмущения существует, но, когда мы накладываем реальные возмущения, мы вынуждены корректировать каким-то образом орбиту. Эти квазипериодические орбиты требуют тоже небольших, по меркам межпланетных полетов, когда характеристические скорости – это сотни м/сек. С точки зрения космического патруля для наблюдения за астероидами они могут быть привлекательны. Единственный минус в том, что они слабо подходят для нынешней пилотируемой космонавтики из-за большой длительности перелетов. А с точки зрения энергии, и даже с теми двигателями, которые сейчас в нашем столетии есть, можно сделать достаточно интересные проекты.

В.: Правильно я понимаю, точки либрации системы Земля - Луна, Вы предполагаете для пилотируемых объектов, а точки, о которых Вы говорили раньше, для автоматов?

У. : Еще я хотел бы добавить один момент, космическая станция в L1 или в L2 может служить для запуска небольших космических аппаратов (американцы называют такой подход « Gate Way » - «Мост во вселенную»). Аппарат может с использованием низкоэнергетических перелетов как-то периодически двигаться вокруг Земли на очень больших расстояниях, либо осуществлять перелет к другим планетам или даже облет нескольких планет.

В.: Если немного пофантазировать, то в дальнейшем Луна будет являться источником космического топлива, и на точку либрации системы Земля - Луна будет поступать лунное топливо, то можно заправлять космические аппараты космическим топливом и посылать космические патрули по всей солнечной системе.

Юрий Петрович, Вы рассказывали об интересных явлениях. Их исследовали американская сторона ( NASA ), а в нашей стране занимаются этими проектами?

У. : Проектами, связанными с точками либрации системы Земля – Луна, насколько я знаю, наверное, не занимаются. Вот проектами, связанными с точками либрации системы Солнце – Земля, занимаются. У нас большой опыт в этом направлении имеют Институт прикладной математики Российской Академии Наук имени Келдыша, Институт космических исследований, некоторые ВУЗы в России пытаются заниматься подобными проблемами. Но такого систематического подхода, большой программы, потому что программа должна начинаться с подготовки кадров, причем кадров с очень высокой квалификацией, нет. В традиционных курсах по космической баллистике, по небесной механике сама механика движения космических аппаратов в окрестности точек либрации, низкоэнергетические перелеты, практически отсутствует.

Я должен отметить, во времена Советского Союза подобными программами занимались более – менее активно, и специалисты были, как я уже упоминал, в Институте прикладной математики, ИКИ, ФИАН. Сейчас многие из них находится в таком возрасте… А большое количестве молодежи, которая занималась бы этими проблемами, проглядывается весьма слабо.

Я упомянул американцев не в том плане, чтобы их похвалить. Дело в том, что в США этими проблемами занимаются очень крупные подразделения. В первую очередь, в лаборатории JPL NASA большой коллектив работает, и они осуществили, наверное, большинство американских проектов межпланетной космонавтики. Во многих американских университетах, в других центрах, в NASA , работает большое количество специалистов с хорошей подготовкой, с хорошим компьютерным оснащением. Они идут по этой проблеме, в этом направлении очень широким фронтом.

У нас, к сожалению, это как-то скомкано. Если бы такая программа в России и появилась бы, представляла в целом большой интерес, то на развертывание этих работ, могло бы уйти достаточно длительное время, начиная с подготовки кадров и кончая исследованиями, расчетами, разработкой соответствующих космических аппаратов.

В.: Юрий Петрович, а какие ВУЗы готовят специалистов по небесной механике в нашей стране?

У. : Насколько я знаю, в МГУ, в Петербургском университете есть кафедра небесной механики. Там такие специалисты есть. Сколько их, я затрудняюсь ответить.

В.: Потому что, чтобы начать реализовывать практическую сторону вопроса, надо сначала стать глубоким специалистом, а для этого надо иметь соответствующую специальность.

У. : И иметь очень хорошую математическую подготовку.

В.: Хорошо. А можете сейчас привести список литературы, который помог бы тем людям, которые не имеют сейчас специальной математической подготовки?

У. : На русском языке, насколько я знаю, посвященная точкам либрации, есть одна монография Маркеева. Если память мне не изменяет, она называется так «Точки либрации в небесной механике и космодинамике». Она, примерно, в 1978 году выходила. Есть справочник под редакцией Дубошина «Справочник по небесной механике и астродинамике». Он выдержал 2 издания. Насколько я помню, в нем тоже такие вопросы есть. Остальное можно почерпнуть, во-первых, на сайте Института прикладной математики есть электронная библиотека и свои препринты (отдельно изданные статьи) по этому направлению. Они печатают в свободном доступе в Интернете. С помощью поисковой системы можно найти соответствующие препринты и их посмотреть. Очень много доступного с Интернете материала на английском языке.

В.: Спасибо за увлекательный рассказ. Я надеюсь, эта тема будет интересна для наших пользователей интернет ресурса. Спасибо Вам огромное!

В системе вращения двух космических тел определенной массы существуют точки в пространстве, поместив в которые любой объект небольшой массы, можно зафиксировать его в стационарном положении относительно этих двух тел вращения. Эти точки получили название точек Лагранжа. В статье пойдет речь о том, как они используются человеком.

Что представляют собой точки Лагранжа?

Для понимания этого вопроса следует обратиться к решению проблемы трех вращающихся тел, два из которых имеют такую массу, что масса третьего тела пренебрежимо мала по сравнению с ними. В таком случае можно найти положения в пространстве, в которых гравитационные поля обоих массивных тел будут компенсировать центростремительную силу всей вращающейся системы. Эти положения и будут точками Лагранжа. Поместив в них тело малой массы, можно наблюдать, как его расстояния до каждого из двух массивных тел не изменяются сколь угодно долго. Здесь можно привести аналогию с геостационарной орбитой, находясь на которой, спутник всегда расположен над одной точкой земной поверхности.

Необходимо пояснить, что тело, которое находится в точке Лагранжа (ее также называют свободной точкой или точкой L), относительно внешнего наблюдателя совершает движение вокруг каждого из двух тел с большой массой, но это движение в совокупности с движением двух оставшихся тел системы имеет такой характер, что относительно каждого из них третье тело находится в покое.

Сколько этих точек и где они находятся?

Для системы вращающихся двух тел с абсолютно любой массой существует всего пять точек L, которые принято обозначать L1, L2, L3, L4 и L5. Все эти точки расположены в плоскости вращения рассматриваемых тел. Первые три точки находятся на линии, соединяющей центры масс двух тел таким образом, что L1 расположена между телами, а L2 и L3 за каждым из тел. Точки L4 и L5 расположены так, что если соединить каждую из них с центрами масс двух тел системы, то получатся два одинаковых треугольника в пространстве. Ниже на рисунке показаны все точки Лагранжа Земля-Солнце.

Синие и красные стрелки на рисунке показывают направление действия результирующей силы при приближении к соответствующей свободной точке. Из рисунка можно видеть, что области точек L4 и L5 являются намного большими, чем зоны точек L1, L2 и L3.

Историческая справка

Впервые существование свободных точек в системе трех вращающихся тел доказал итальяно-французский математик в 1772 году. Для этого ученому пришлось ввести некоторые гипотезы и разработать собственную механику, отличную от механики Ньютона.

Лагранж вычислил точки L, которые были названы в честь его имени, для идеальных круговых орбит вращения. В действительности же орбиты являются эллиптическими. Последний факт приводит к тому, что уже не существуют точки Лагранжа, а существуют области, в которых третье тело малой массы совершает круговое движение подобно движению каждого из двух массивных тел.

Свободная точка L1

Существование точки Лагранжа L1 легко доказать, применяя следующие рассуждения: возьмем для примера Солнце и Землю, согласно третьему закону Кеплера, чем ближе тело находится к своей звезде, тем короче его период вращения вокруг этой звезды (квадрат периода вращения тела прямо пропорционален кубу среднего расстояния от тела до звезды). Это означает, что любое тело, которое расположено между Землей и Солнцем, будет вращаться вокруг звезды быстрее, чем наша планета.

Однако не учитывает влияние гравитации второго тела, то есть Земли. Если принять во внимание этот факт, то можно предположить, что чем ближе к Земле находится третье тело малой массы, тем сильнее будет противодействие земной гравитации солнечной. В итоге найдется такая точка, где земная гравитация замедлит скорость вращения третьего тела вокруг Солнца таким образом, что периоды вращения планеты и тела сравняются. Это и будет свободная точка L1. Расстояние до точки Лагранжа L1 от Земли равно 1/100 от радиуса орбиты планеты вокруг звезды и составляет 1,5 млн км.

Как используют область L1? Это идеальное место, где можно наблюдать за солнечной радиацией, поскольку здесь никогда не бывает солнечных затмений. В настоящее время в области L1 расположены несколько спутников, которые занимаются изучением солнечного ветра. Одним из них является европейский искусственный спутник SOHO.

Что касается этой точки Лагранжа Земля-Луна, то находится она приблизительно в 60 000 км от Луны, и используется в качестве "перевалочного" пункта во время миссий космических кораблей и спутников на Луну и обратно.

Свободная точка L2

Рассуждая аналогично предыдущему случаю, можно сделать вывод, что в системе двух тел вращения за пределами орбиты тела с меньшей массой должна существовать область, где падение центробежной силы компенсируется гравитацией этого тела, что приводит к выравниванию периодов вращения тела с меньшей массой и третьего тела вокруг тела с большей массой. Эта область является свободной точкой L2.

Если рассматривать систему Солнце-Земля, то до этой точки Лагранжа расстояние от планеты будет точно такое же, как и до точки L1, то есть 1,5 млн км, только расположена L2 за Землей и дальше от Солнца. Поскольку в области L2 отсутствует влияние солнечной радиации благодаря земной защите, то ее используют для наблюдений за Вселенной, располагая здесь разные спутники и телескопы.

В системе Земля-Луна точка L2 расположена за естественным спутником Земли на расстоянии от него в 60 000 км. В лунной L2 находятся спутники, которые используются для наблюдений за обратной стороной Луны.

Свободные точки L3, L4 и L5

Точка L3 в системе Солнце-Земля находится за звездой, поэтому с Земли ее нельзя наблюдать. Точка не используется никак, поскольку она является нестабильной из-за влияния гравитации других планет, например, Венеры.

Точки L4 и L5 являются самыми стабильными областями Лагранжа, поэтому практически около каждой планеты в них находятся астероиды или космическая пыль. Например, в этих точках Лагранжа Луны существует только космическая пыль, а в L4 и L5 Юпитера расположены троянские астероиды.

Другие применения свободных точек

Помимо установки спутников и наблюдения за космосом, точки Лагранжа Земли и других планет можно использовать и для космических путешествий. Из теории следует, что перемещения через точки Лагранжа разных планет являются энергетически выгодными и требуют небольших затрат энергий.

Еще одним интересным примером использования точки L1 Земли стал физический проект одного украинского школьника. Он предложил расположить в этой области облако астероидной пыли, которое будет защищать Землю от губительного солнечного ветра. Таким образом, точку можно использовать для воздействия на климат всей голубой планеты.

> Точки Лагранжа

Как выглядят и где искать точки Лагранжа в космосе: история обнаружения, система Земля и Луна, 5 L-точек системы двух массивных тел, влияние гравитации.

Будем откровенны: мы застряли на Земле. Стоит поблагодарить гравитацию за то, что нас не выкинуло в космическое пространство и мы можем ходить по поверхности. Но чтобы вырваться, приходится прикладывать огромное количество энергии.

Однако, во Вселенной есть определенные регионы, где умная система сбалансировала гравитационное влияние. При правильном подходе это можно использовать для более продуктивного и быстрого освоения пространства.

Эти места называют точками Лагранжа (L-точки). Наименование получили от Жозефа Луи Лагранжа, который описал их в 1772 году. Фактически, ему удалось расширить математику Леонарда Ейлера. Ученый первым открыл три таких точки, а Лагранж заявил о следующих двух.

Точки Лагранжа: О чем идет речь?

Когда вы располагаете двумя массивными объектами (например, Солнце и Земля), то их гравитационный контакт замечательно сбалансирован в конкретных 5 участках. В каждом из них можно расположить спутник, который будет удерживаться на месте при минимальных усилиях.

Наиболее примечательная – первая точка Лагранжа L1, сбалансированная между гравитационным притяжением двух объектов. Например, можно установить спутник над поверхностью Луны. Земная тяжесть вталкивает его в Луну, но сила спутника также сопротивляется. Так что аппарату не придется тратить много топлива. Важно понимать, что эта точка есть между всеми объектами.

L2 находится на одной линии с массой, но с другой стороны. Почему же объединенная гравитация не притягивает спутник к Земле? Все дело в орбитальных траекториях. Спутник в точке L2 расположится на более высокой орбите и отстает от Земли, так как перемещается вокруг звезды медленнее. Но земная гравитация подталкивает его и помогает закрепиться на месте.

L3 искать нужно на противоположной стороне от системы. Гравитация между объектами стабилизируется и аппарат с легкостью маневрирует. Такой спутник всегда закрывался бы Солнцем. Стоит отметить, что три описанные точки не считаются устойчивыми, потому любой спутник рано или поздно отклонится. Так что без рабочих двигателей там делать нечего.

Есть также L4 и L5, расположенные спереди и сзади нижнего объекта. Между массами создается равносторонний треугольник, одной из сторон которого будет L4. Если перевернете вверх ногами, то получите L5.

Последние две точки считают стабильными. Это подтверждают найденные астероиды на крупных планетах, вроде Юпитера. Это троянцы, попавшие в гравитационную ловушку между гравитациями Солнца и Юпитера.

Как использовать такие места? Важно понимать, что существует множество разновидностей космического освоения. Например, в точках Земля-Солнце и Земля-Луна уже расположены спутники.

Солнце-Земля L1 – прекрасное место для проживания солнечного телескопа. Аппарат максимально подошел к звезде, но не теряет связи с родной планетой.

В точке L2 планируют разместить будущий телескоп Джеймса Уэбба (в 1.5 миллионах км от нас).

Земля-Луна L1 – отличная точка для лунной станции по дозаправке, которая позволяет экономить на доставке топлива.

Наиболее фантастической идеей будет желание поставить в L4 и L5 космическую станцию Остров III, потому что там она была бы абсолютной стабильной.

Давайте все же поблагодарим гравитацию и ее диковинное взаимодействие с другими объектами. Ведь это позволяет расширить способы освоения пространства.

Когда Жозеф Луи Лагранж работал над задачей двух массивных тел (ограниченной задачей трёх тел), он обнаружил, что в такой системе существует 5 точек, обладающих следующим свойством: если в них расположены тела пренебрежимо малой массы (относительно массивных тел), то эти тела будет неподвижны относительно тех двух массивных тел. Важный момент: массивные тела должны вращаться вокруг общего центра масс, если же они каким-то образом будут просто покоиться, то вся эта теория тут неприменима, сейчас поймете, почему.

Самым удачным примером, конечно же, является Солнце и Земля, их и рассмотрим. Первые три точки L1, L2, L3 находятся на линии, соединяющей центры масс Земли и Солнца.

Точка L1 находится между телами (ближе к Земле). Почему она есть? Представьте, что между Землей и Солнцем какой нибудь маленький астероид, который вращается вокруг Солнца. Как правило, у тел внутри земной орбиты частота обращения выше, чем у Земли (но не обязательно) Так вот, если у нашего астероида частота обращения выше, то он время от времени будет пролетать мимо нашей планеты, и она будет тормозить его своей гравитацией, и в конце концов частота обращения астероида станет такой же, как и у Земли. Если же у Земли частота обращения больше, то она, пролетая время от времени мимо астероида будет тянуть его за собой и разгонять и результат тот же: частоты обращения Земли и астероида сравняются. Но такое возможно только если орбита астероида проходит через точку L1.

Точка L2 находится за Землей. Может показаться, что наш воображаемый астероид в этой точке должен притягиваться к Земле и Солнцу, так как они оказались с одной стороны от него, но нет. Не забывайте, что система вращается, и благодаря этому центробежная сила, действующая на астероид, уравнивается гравитационными силами Земли и Солнца. У тел за пределами земной орбиты, в основном, частота обращения меньше, чем у Земли (опять же, не всегда). Так что суть та же: орбита астероида проходит через L2 и Земля, время от времени пролетая мимо, тянет астероид за собой, в конечном счете уравнивая частоту его обращения со своей.

Точка L3 находится за Солнцем. Помните, раньше у фантастов была такая мысль, что с той стороны Солнца находится ещё одна планета, типа Противоземля? Так вот, точка L3 находится почти там, но чуть-чуть подальше от Солнца, а не ровно на земной орбите, так как центр масс системы "Солнце-Земля" не совпадает с центром масс Солнца. С частотой обращения астероида в точке L3 всё очевидно, она должна быть такой же как у Земли; если будет меньше, астероид упадет на Солнце, если больше - улетит. Кстати, данная точка самая не устойчивая, её шатает из-за влияния других планет, особенно Венеры.

L4 и L5 расположены на орбите, которая чуть больше Земной, причём следующим образом: представьте, что из центра масс системы "Солнце-Земля" мы провели луч к Земле и другой луч, так чтобы угол между этими лучами был 60 градусов. Причем в обе стороны, то есть против часовой стрелки и по ней. Так вот, на одном таком луче находиться L4, а на другом L5. L4 будет перед Землей по ходу движения, то есть как бы убегать от Земли, а L5, соответственно, догонять Землю. Расстояния от любой из этих точек до Земли и до Солнца одинаковы. Теперь, вспомнив закон всемирного тяготения, замечаем, что сила притяжения пропорциональна массе, а значит наш астероид в L4 или L5 будет притягиваться к Земле во столько раз слабее, во сколько Земля легче Солнца. Если чисто геометрически построить векторы этих сил, то их равнодействующая будет направлена ровно на барицентр (центр масс системы "Солнце-Земля"). Солнце с Землей вращаются вокруг барицентра с одинаковой частотой, с той же частотой будут вращаться и астероиды в L4 и L5. L4 называют греками, а L5 - троянцами в честь троянских астероидов Юпитера (подробнее на Вики).

Со стороны двух первых тел, может оставаться неподвижным относительно этих тел.

Более точно точки Лагранжа представляют собой частный случай при решении так называемой ограниченной задачи трёх тел - когда орбиты всех тел являются круговыми и масса одного из них намного меньше массы любого из двух других. В этом случае можно считать, что два массивных тела обращаются вокруг их общего центра масс с постоянной угловой скоростью . В пространстве вокруг них существуют пять точек, в которых третье тело с пренебрежимо малой массой может оставаться неподвижным во вращающейся системе отсчёта, связанной с массивными телами. В этих точках гравитационные силы, действующие на малое тело, уравновешиваются центробежной силой .

Точки Лагранжа получили своё название в честь математика Жозефа Луи Лагранжа , который первым в 1772 году привёл решение математической задачи, из которого следовало существование этих особых точек.

Все точки Лагранжа лежат в плоскости орбит массивных тел и обозначаются заглавной латинской буквой L с числовым индексом от 1 до 5. Первые три точки расположены на линии, проходящей через оба массивных тела. Эти точки Лагранжа называются коллинеарными и обозначаются L 1 , L 2 и L 3 . Точки L 4 и L 5 называются треугольными или троянскими. Точки L 1 , L 2 , L 3 являются точками неустойчивого равновесия, в точках L 4 и L 5 равновесие устойчивое.

L 1 находится между двумя телами системы, ближе к менее массивному телу; L 2 - снаружи, за менее массивным телом; и L 3 - за более массивным. В системе координат с началом отсчёта в центре масс системы и с осью, направленной от центра масс к менее массивному телу, координаты этих точек в первом приближении по α рассчитываются с помощью следующих формул :

Точка L 1 лежит на прямой, соединяющей два тела с массами M 1 и M 2 (M 1 > M 2), и находится между ними, вблизи второго тела. Её наличие обусловлено тем, что гравитация тела M 2 частично компенсирует гравитацию тела M 1 . При этом чем больше M 2 , тем дальше от него будет располагаться эта точка.

Лунная точка L 1 (в системе Земля - Луна ; удалена от центра Земли примерно на 315 тыс.км ) может стать идеальным местом для строительства космической пилотируемой орбитальной станции , которая, располагаясь на пути между Землёй и Луной, позволила бы легко добраться до Луны с минимальными затратами топлива и стать ключевым узлом грузового потока между Землёй и её спутником .

Точка L 2 лежит на прямой, соединяющей два тела с массами M 1 и M 2 (M 1 > M 2), и находится за телом с меньшей массой. Точки L 1 и L 2 располагаются на одной линии и в пределе M 1 ≫ M 2 симметричны относительно M 2 . В точке L 2 гравитационные силы, действующие на тело, компенсируют действие центробежных сил во вращающейся системе отсчёта.

Точка L 2 в системе Солнце - Земля является идеальным местом для строительства орбитальных космических обсерваторий и телескопов. Поскольку объект в точке L 2 способен длительное время сохранять свою ориентацию относительно Солнца и Земли, производить его экранирование и калибровку становится гораздо проще. Однако эта точка расположена немного дальше земной тени (в области полутени) [прим. 1] , так что солнечная радиация блокируется не полностью. На гало-орбитах вокруг этой точки на данный момент (2020 год) находятся аппараты Gaia и Спектр-РГ . Ранее там действовали такие телескопы как «Планк » и «Гершель» , в дальнейшем туда планируется направить ещё несколько телескопов, включая Джеймс Уэбб (в 2021 году).

Точка L 2 в системе Земля-Луна может быть использована для обеспечения спутниковой связи с объектами на обратной стороне Луны, а также быть удобным местом для размещения заправочной станции для обеспечения грузопотока между Землёй и Луной

Если M 2 много меньше по массе, чем M 1 , то точки L 1 и L 2 находятся на примерно одинаковом расстоянии r от тела M 2 , равном радиусу сферы Хилла :

Точка L 3 лежит на прямой, соединяющей два тела с массами M 1 и M 2 (M 1 > M 2 ), и находится за телом с бо́льшей массой. Так же, как для точки L 2 , в этой точке гравитационные силы компенсируют действие центробежных сил.

До начала космической эры среди писателей-фантастов была очень популярна идея о существовании на противоположной стороне земной орбиты в точке L 3 другой аналогичной ей планеты, называемой «Противоземлёй », которая из-за своего расположения была недоступна для прямых наблюдений. Однако на самом деле из-за гравитационного влияния других планет точка L 3 в системе Солнце - Земля является крайне неустойчивой. Так, во время гелиоцентрических соединений Земли и Венеры по разные стороны Солнца, которые случаются каждые 20 месяцев , Венера находится всего в 0,3 а.е. от точки L 3 и таким образом оказывает очень серьёзное влияние на её расположение относительно земной орбиты. Кроме того, из-за несбалансированности [прояснить ] центра тяжести системы Солнце - Юпитер относительно Земли и эллиптичности земной орбиты, так называемая «Противоземля» всё равно время от времени была бы доступна для наблюдений и обязательно была бы замечена. Ещё одним эффектом, выдающим её существование, была бы её собственная гравитация: влияние тела размером уже порядка 150 км и более на орбиты других планет было бы заметно . С появлением возможности производить наблюдения с помощью космических аппаратов и зондов было достоверно показано, что в этой точке нет объектов размером более 100 м .

Орбитальные космические аппараты и спутники, расположенные вблизи точки L 3 , могут постоянно следить за различными формами активности на поверхности Солнца - в частности, за появлением новых пятен или вспышек, - и оперативно передавать информацию на Землю (например, в рамках системы раннего предупреждения о космической погоде NOAA). Кроме того, информация с таких спутников может быть использована для обеспечения безопасности дальних пилотируемых полётов, например к Марсу или астероидам. В 2010 году были изучены несколько вариантов запуска подобного спутника

Если на основе линии, соединяющей оба тела системы, построить два равносторонних треугольника, две вершины которых соответствуют центрам тел M 1 и M 2 , то точки L 4 и L 5 будут соответствовать положению третьих вершин этих треугольников, расположенных в плоскости орбиты второго тела в 60 градусах впереди и позади него.

Наличие этих точек и их высокая стабильность обусловливается тем, что, поскольку расстояния до двух тел в этих точках одинаковы, то силы притяжения со стороны двух массивных тел соотносятся в той же пропорции, что их массы, и таким образом результирующая сила направлена на центр масс системы; кроме того, геометрия треугольника сил подтверждает, что результирующее ускорение связано с расстоянием до центра масс той же пропорцией, что и для двух массивных тел. Так как центр масс является одновременно и центром вращения системы, результирующая сила точно соответствует той, которая нужна для удержания тела в точке Лагранжа в орбитальном равновесии с остальной системой. (На самом деле, масса третьего тела и не должна быть пренебрежимо малой). Данная треугольная конфигурация была обнаружена Лагранжем во время работы над задачей трёх тел . Точки L 4 и L 5 называют треугольными (в отличие от коллинеарных).

Также точки называют троянскими : это название происходит от троянских астероидов Юпитера , которые являются самым ярким примером проявления этих точек. Они были названы в честь героев Троянской войны из «Илиады » Гомера , причём астероиды в точке L 4 получают имена греков, а в точке L 5 - защитников Трои ; поэтому их теперь так и называют «греками» (или «ахейцами ») и «троянцами».

Расстояния от центра масс системы до этих точек в координатной системе с центром координат в центре масс системы рассчитываются по следующим формулам:

Тела, помещённые в коллинеарных точках Лагранжа, находятся в неустойчивом равновесии. Например, если объект в точке L 1 слегка смещается вдоль прямой, соединяющей два массивных тела, сила, притягивающая его к тому телу, к которому оно приближается, увеличивается, а сила притяжения со стороны другого тела, наоборот, уменьшается. В результате объект будет всё больше удаляться от положения равновесия.

Такая особенность поведения тел в окрестностях точки L 1 играет важную роль в тесных двойных звёздных системах . Полости Роша компонент таких систем соприкасаются в точке L 1 , поэтому, когда одна из звёзд-компаньонов в процессе эволюции заполняет свою полость Роша, вещество перетекает с одной звезды на другую именно через окрестности точки Лагранжа L 1 .

Несмотря на это, существуют стабильные замкнутые орбиты (во вращающейся системе координат) вокруг коллинеарных точек либрации, по крайней мере, в случае задачи трёх тел. Если на движение влияют и другие тела (как это происходит в Солнечной системе), вместо замкнутых орбит объект будет двигаться по квазипериодическим орбитам, имеющим форму фигур Лиссажу . Несмотря на неустойчивость такой орбиты,