Медицина        04.02.2022   

Электростатическое поле создается равномерно заряженной бесконечной плоскостью. Покажите, что это поле является однородным

В однородном электрическом поле, сила, действующая на заряженную частицу, постоянна как по величине, так и по направлению. Поэтому движение такой частицы полностью аналогично движению тела в поле тяжести земли без учета сопротивления воздуха. Траектория частицы в этом случае является плоской, лежит в плоскости, содержащей векторы начальной скорости частицы и напряженности электрического поля

Потенциал электростатического поля. Общее выражение, связывающее потенциал с напряженностью.

Потенциал φ в какой-либо точке электростатического поля есть физическая величина, определяемая потенциальной энергией единичного положительного заряда, помещенного в эту точку. Потенциал поля, создаваемого точечным зарядом Q, равен

Потенциал - физическая величина, которая определяется работой по перемещению единичного положительного электрического заряда при удалении его из данной точки поля в бесконечность. Эта работа численно равна работе, которую совершают внешние силы (против сил электростатического поля) по перемещению единичного положительного заряда из бесконечности в данную точку поля.

Единица потенциала - вольт (В): 1 В равен потенциалу такой точки поля, в которой заряд в 1 Кл обладает потенциальной энергией 1 Дж (1 В = 1 Дж/Кл). Учитывая размерность вольта, можно показать, что введенная ранее единица напряженности электростатического поля действительно равна 1 В/м: 1 Н/Кл=1 Н м/(Кл м)=1 Дж/(Кл м)=1 В/м.

Из формул (3) и (4) следует, что если поле создается несколькими зарядами, то потенциал данного поля системы зарядов равен алгебраической сумме потенциалов полей всех этих зарядов:

Напряжённость в какой-либо точке электрического поля равна градиенту потенциала в этой точке, взятому с обратным знаком. Знак «минус» указывает, что напряженность E направлена в сторону убывания потенциала.

E = - grad фи = - N фи.

Для установления связи между силовой характеристикой электрического поля - напряжённостью и его энергетической характеристикой - потенциалом рассмотрим элементарную работу сил электрического поля на бесконечно малом перемещении точечного заряда q: dA = q E dl, эта же работа равна убыли потенциальной энергии заряда q: dA = - dWп = - q dфи, где d фи - изменение потенциала электрического поля на длине перемещения dl. Приравнивая правые части выражений, получаем: E dl = -d фи или в декартовой системе координат

Ex dx + Ey dy + Ez dz = -d фи

где Ex, Ey, Ez - проекции вектора напряженности на оси системы координат. Поскольку выражение представляет собой полный дифференциал, то для проекций вектора напряженности имеем

Стоящее в скобках выражение является градиентом потенциала фи.

Принцип суперпозиции как фундаментальное свойство полей. Общие выражения для напряженности и потенциала поля, создаваемого в точке с радиус-вектором системой точечных зарядов, находящихся в точках с координатами.(см п.4)

Если рассмотреть принцип суперпозиции в самом общем смысле, то согласно ему, сумма воздействия внешних сил, действующих на частицу, будет складываться из отдельных значений каждой из них. Данный принцип применяется к различным линейным системам, т.е. таким системам, поведение которых можно описать линейными соотношениями. Примером может послужить простая ситуация, когда линейная волна распространяется в какой-то определённой среде, в этом случае её свойства будут сохраняться даже под действием возмущений, возникающих из-за самой волны. Эти свойства определяются как конкретная сумма эффектов каждой из гармоничных составляющих.

Принцип суперпозиции может принимать и иные формулировки, которые полностью эквивалентны приведённой выше:

· Взаимодействие между двумя частицами не изменяется при внесении третьей частицы, также взаимодействующей с первыми двумя.

· Энергия взаимодействия всех частиц в многочастичной системе есть просто сумма энергий парных взаимодействий между всеми возможными парами частиц. В системе нет многочастичных взаимодействий.

· Уравнения, описывающие поведение многочастичной системы, являются линейными по количеству частиц.

6 Циркуляцией вектора напряженности называется работа, которую совершают электрические силы при перемещении единичного положительного заряда по замкнутому пути L

Так как работа сил электростатического поля по замкнутому контуру равна нулю (работа сил потенциального поля), следовательно циркуляция напряженности электростатического поля по замкнутому контуру равна нулю.

Потенциал поля. Работа любого электростатического поля при перемещении в нем заряженного тела из одной точки в другую также не зависит от формы траектории, как и работа однородного поля. На замкнутой траектории работа электростатического поля всегда равна нулю. Поля, обладающие таким свойством, называют потенциальными. Потенциальный характер, в частности, имеет электростатическое поле точечного заряда.
Работу потенциального поля можно выразить через изменение потенциальной энергии. Формула справедлива для любого электростатического поля.

7-11Если силовые линии однородного электрического поля напряженностью пронизывают некоторую площадку S, то поток вектора напряженности (раньше мы называли число силовых линий через площадку) будет определяться формулой:

где En – произведение вектора на нормаль к данной площадке (рис. 2.5).


Рис. 2.5

Полное число силовых линий, проходящих через поверхность S называется потоком вектора напряженности ФЕ через эту поверхность.

В векторной форме можно записать – скалярное произведение двух векторов, где вектор .

Таким образом, поток вектора есть скаляр, который в зависимости от величины угла α может быть как положительным, так и отрицательным.

Рассмотрим примеры, изображенные на рисунках 2.6 и 2.7.


Рис. 2.6 Рис. 2.7

Для рисунка 2.6 – поверхность А1 окружает положительный заряд и поток здесь направлен наружу, т.е. Поверхность А2– окружает отрицательный заряд, здесь и направлен внутрь. Общий поток через поверхность А равен нулю.

Для рисунка 2.7 – поток будет не равен нулю, если суммарный заряд внутри поверхности не равен нулю. Для этой конфигурации поток через поверхность А отрицательный (подсчитайте число силовых линий).

Таким образом, поток вектора напряженности зависит от заряда. В этом смысл теоремы Остроградского-Гаусса.

Теорема Гаусса

Экспериментально установленные закон Кулона и принцип суперпозиции позволяют полностью описать электростатическое поле заданной системы зарядов в вакууме. Однако, свойства электростатического поля можно выразить в другой, более общей форме, не прибегая к представлению о кулоновском поле точечного заряда.

Введем новую физическую величину, характеризующую электрическое поле – поток Φ вектора напряженности электрического поля. Пусть в пространстве, где создано электрическое поле, расположена некоторая достаточно малая площадка ΔS. Произведение модуля вектора на площадь ΔS и на косинус угла α между вектором и нормалью к площадке называется элементарным потоком вектора напряженности через площадку ΔS (рис. 1.3.1):

Рассмотрим теперь некоторую произвольную замкнутую поверхность S. Если разбить эту поверхность на малые площадки ΔSi, определить элементарные потоки ΔΦi поля через эти малые площадки, а затем их просуммировать, то в результате мы получим поток Φ вектора через замкнутую поверхность S (рис. 1.3.2):

Теорема Гаусса утверждает:

Поток вектора напряженности электростатического поля через произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на электрическую постоянную ε0.

где R – радиус сферы. Поток Φ через сферическую поверхность будет равен произведению E на площадь сферы 4πR2. Следовательно,

Окружим теперь точечный заряд произвольной замкнутой поверхностью S и рассмотрим вспомогательную сферу радиуса R0 (рис. 1.3.3).

Рассмотрим конус с малым телесным углом ΔΩ при вершине. Этот конус выделит на сфере малую площадку ΔS0, а на поверхности S – площадку ΔS. Элементарные потоки ΔΦ0 и ΔΦ через эти площадки одинаковы. Действительно,

Аналогичным образом можно показать, что, если замкнутая поверхность S не охватывает точечного заряда q, то поток Φ = 0. Такой случай изображен на рис. 1.3.2. Все силовые линии электрического поля точечного заряда пронизывают замкнутую поверхность S насквозь. Внутри поверхности S зарядов нет, поэтому в этой области силовые линии не обрываются и не зарождаются.

Обобщение теоремы Гаусса на случай произвольного распределения зарядов вытекает из принципа суперпозиции. Поле любого распределения зарядов можно представить как векторную сумму электрических полей точечных зарядов. Поток Φ системы зарядов через произвольную замкнутую поверхность S будет складываться из потоков Φi электрических полей отдельных зарядов. Если заряд qi оказался внутри поверхности S, то он дает вклад в поток, равный если же этот заряд оказался снаружи поверхности, то вклад его электрического поля в поток будет равен нулю.

Таким образом, теорема Гаусса доказана.

Теорема Гаусса является следствием закона Кулона и принципа суперпозиции. Но если принять утверждение, содержащееся в этой теореме, за первоначальную аксиому, то ее следствием окажется закон Кулона. Поэтому теорему Гаусса иногда называют альтернативной формулировкой закона Кулона.

Используя теорему Гаусса, можно в ряде случаев легко вычислить напряженность электрического поля вокруг заряженного тела, если заданное распределение зарядов обладает какой-либо симметрией и общую структуру поля можно заранее угадать.

Примером может служить задача о вычислении поля тонкостенного полого однородно заряженного длинного цилиндра радиуса R. Эта задача имеет осевую симметрию. Из соображений симметрии электрическое поле должно быть направлено по радиусу. Поэтому для применения теоремы Гаусса целесообразно выбрать замкнутую поверхность S в виде соосного цилиндра некоторого радиуса r и длины l, закрытого с обоих торцов (рис. 1.3.4).

При r ≥ R весь поток вектора напряженности будет проходить через боковую поверхность цилиндра, площадь которой равна 2πrl, так как поток через оба основания равен нулю. Применение теоремы Гаусса дает:

Этот результат не зависит от радиуса R заряженного цилиндра, поэтому он применим и к полю длинной однородно заряженной нити.

Для определения напряженности поля внутри заряженного цилиндра нужно построить замкнутую поверхность для случая r < R. В силу симметрии задачи поток вектора напряженности через боковую поверхность гауссова цилиндра должен быть и в этом случае равен Φ = E 2πrl. Согласно теореме Гаусса, этот поток пропорционален заряду, оказавшемуся внутри замкнутой поверхности. Этот заряд равен нулю. Отсюда следует, что электрическое поле внутри однородно заряженного длинного полого цилиндра равно нулю.

Аналогичным образом можно применить теорему Гаусса для определения электрического поля в ряде других случаев, когда распределение зарядов обладает какой-либо симметрией, например, симметрией относительно центра, плоскости или оси. В каждом из таких случаев нужно выбирать замкнутую гауссову поверхность целесообразной формы. Например, в случае центральной симметрии гауссову поверхность удобно выбирать в виде сферы с центром в точке симметрии. При осевой симметрии замкнутую поверхность нужно выбирать в виде соосного цилиндра, замкнутого с обоих торцов (как в рассмотренном выше примере). Если распределение зарядов не обладает какой-либо симметрией и общую структуру электрического поля угадать невозможно, применение теоремы Гаусса не может упростить задачу определения напряженности поля.

Рассмотрим еще один пример симметричного распределения зарядов – определение поля равномерно заряженной плоскости (рис. 1.3.5).

В этом случае гауссову поверхность S целесообразно выбрать в виде цилиндра некоторой длины, закрытого с обоих торцов. Ось цилиндра направлена перпендикулярно заряженной плоскости, а его торцы расположены на одинаковом расстоянии от нее. В силу симметрии поле равномерно заряженной плоскости должно быть везде направлено по нормали. Применение теоремы Гаусса дает:

где σ – поверхностная плотность заряда, т. е. заряд, приходящийся на единицу площади.

Полученное выражение для электрического поля однородно заряженной плоскости применимо и в случае плоских заряженных площадок конечного размера. В этом случае расстояние от точки, в которой определяется напряженность поля, до заряженной площадки должно быть значительно меньше размеров площадки.

И графики к 7 – 11

1. Напряженность электростатического поля, создаваемого равномерно заряженной сферической поверхностью.

Пусть сферическая поверхность радиуса R (рис. 13.7) несет на себе равномерно распределенный заряд q, т.е. поверхностная плотность заряда в любой точке сферы будет одинакова.

a. Заключим нашу сферическую поверхность в симметричную поверхность S с радиусом r>R. Поток вектора напряженности через поверхность S будет равен

По теореме Гаусса

Следовательно

c. Проведем через точку В, находящуюся внутри заряженной сферической поверхности, сферу S радиусом г

2. Электростатическое поле шара.

Пусть имеем шар радиуса R, равномерно заряженный с объемной плотностью.

В любой точке А, лежащей вне шара на расстоянии r от его центра (r>R), его поле аналогично полю точечного заряда , расположенного в центре шара. Тогда вне шара

(13.10)

а на его поверхности (r=R)

(13.11)

В точке В, лежащей внутри шара на расстояний r от его центра (r>R), поле определяется лишь зарядом , заключенным внутри сферы радиусом r. Поток вектора напряженности через эту сферу равен

с другой стороны, в соответствии с теоремой Гаусса

По теореме Гаусса

Из последних двух выражений определяем напряженность поля, создаваемого равномерно заряженной нитью:

(13.13)

Пусть плоскость имеет бесконечную протяженность и заряд на единицу площади равен σ. Из законов симметрии следует, что поле направлено всюду перпендикулярно плоскости, и если не существует никаких других внешних зарядов, то поля по обе стороны плоскости должны быть одинаковы. Ограничим часть заряженной плоскости воображаемым цилиндрическим ящиком, таким образом, чтобы ящик рассекался пополам и его образующие были перпендикулярны, а два основания, имеющие площадь S каждое, параллельны заряженной плоскости (рис 1.10).

12. Поле равномерно заряженной сферы .

Пусть электрическое поле создается зарядом Q , равномерно распределенным по поверхности сферы радиуса R (Рис. 190). Для вычисления потенциала поля в произвольной точке, находящейся на расстоянии r от центра сферы, необходимо вычислить работу, совершаемую полем при перемещении единичного положительного заряда от данной точки до бесконечности. Ранее мы доказали, что напряженность поля равномерно заряженной сферы вне ее эквивалентно полю точечного заряда, расположенного в центре сферы. Следовательно, вне сферы потенциал поля сферы будет совпадать с потенциалом поля точечного заряда

φ (r )=Q 4πε 0r . (1)

В частности, на поверхности сферы потенциал равен φ 0=Q 4πε 0R . Внутри сферы электростатическое поле отсутствует, поэтому работа по перемещению заряда из произвольной точки, находящейся внутри сферы, на ее поверхность равна нулю A = 0, поэтому и разность потенциалов между этими точками также равна нулю Δφ = -A = 0. Следовательно, все точки внутри сферы имеют один и тот же потенциал, совпадающий с потенциалом ее поверхности φ 0=Q 4πε 0R .

Итак, распределение потенциала поля равномерно заряженной сферы имеет вид (Рис. 191)

φ (r )=⎧⎩⎨Q 4πε 0R , npu r <RQ 4πε 0r , npu r >R . (2)

Обратите внимание, поле внутри сферы отсутствует, а потенциал отличен от нуля! Этот пример является яркой иллюстрацией, того, что потенциал определяется значением поля от данной точки до бесконечности.

1. Напряженность электростатического поля, создаваемого равномерно заряженной сферической поверхностью.

Пусть сферическая поверхность радиуса R (рис. 13.7) несет на себе равномерно распределенный заряд q, т.е. поверхностная плотность заряда в любой точке сферы будет одинакова.

2. Электростатическое поле шара.

Пусть имеем шар радиуса R, равномерно заряженный с объемной плотностью.

В любой точке А, лежащей вне шара на расстоянии r от его центра (r>R), его поле аналогично полю точечного заряда , расположенного в центре шара. Тогда вне шара

(13.10)

а на его поверхности (r=R)

(13.11)

В точке В, лежащей внутри шара на расстояний r от его центра (r>R), поле определяется лишь зарядом , заключенным внутри сферы радиусом r. Поток вектора напряженности через эту сферу равен

с другой стороны, в соответствии с теоремой Гаусса

Из сопоставления последних выражений следует

(13.12)

где- диэлектрическая проницаемость внутри шара. Зависимость напряженности поля, создаваемого заряженной сферой, от расстояния до центра шара приведена на (рис.13.10)

3. Напряженность поля равномерно заряженной бесконечной прямолинейной нити (или цилиндра).

Предположим, что полая цилиндрическая поверхность радиуса R заряжена с постоянной линейной плотностью .

Проведем коаксиальную цилиндрическую поверхность радиуса Поток вектора напряженности через эту поверхность

По теореме Гаусса

Из последних двух выражений определяем напряженность поля, создаваемого равномерно заряженной нитью:

(13.13)

Пусть плоскость имеет бесконечную протяженность и заряд на единицу площади равен σ. Из законов симметрии следует, что поле направлено всюду перпендикулярно плоскости, и если не существует никаких других внешних зарядов, то поля по обе стороны плоскости должны быть одинаковы. Ограничим часть заряженной плоскости воображаемым цилиндрическим ящиком, таким образом, чтобы ящик рассекался пополам и его образующие были перпендикулярны, а два основания, имеющие площадь S каждое, параллельны заряженной плоскости (рис 1.10).

Суммарный поток вектора; напряженности равен вектору , умноженному на площадь S первого основания, плюс поток вектора через противоположное основание. Поток напряженности через боковую поверхность цилиндра равен нулю, т.к. линии напряженности их не пересекают. Таким образом, С другой стороны по теореме Гаусса

Следовательно

но тогда напряженность поля бесконечной равномерно заряженной плоскости будет равна

Потенциал поля

Потенциал поля

Потенциал поля

потенциалов поля

Потенциал электрического поля точечного заряда Q в точке:

Поле заряженного бесконечно длинного цилиндра (нити)

Пусть поле создается бесконечной цилиндрической поверхностью радиуса R , заряженной с постоянной линейной плотностью , где dq – заряд, сосредоточенный на отрезке цилиндра (рис. 2.14).

Из соображения симметрии следует, что Е в любой точке будет направлена вдоль радиуса, перпендикулярно оси цилиндра.

Представим вокруг цилиндра (нити) коаксиальную замкнутую поверхность (цилиндр в цилиндре ) радиуса r и длиной l (основания цилиндров перпендикулярно оси). Для оснований цилиндров для боковой поверхности т.е. зависит от расстояния r.

Следовательно, поток вектора через рассматриваемую поверхность, равен

При на поверхности будет заряд По теореме Остроградского-Гаусса , отсюда

. (2.5.6)

Если , т.к. внутри замкнутой поверхности зарядов нет (рис.2.15).

Если уменьшать радиус цилиндра R (при ), то можно вблизи поверхности получить поле с очень большой напряженностью и, при , получить нить.

27. Потенциал поля, создаваемого равномерно заряженной бесконечной плоскостью.

Потенциал поля - это энергетическая характеристика поля, характеризует потенциальнную энергию, которой обладал бы положительный единичный заряд, помещенный в данную точку поля.

Единица электрического потенциала - вольт (В).

Потенциал поля равнен отношению потенциальной энергии заряда к этому заряду:

Потенциал поля является энергетической характеристикой электрического поля и как скалярная величина может принимать положительные или отрицательные значения.

Физический смысл имеет разность потенциалов поля , так как через нее выражается работа сил поля по перемещению заряда.

Поле равномерно заряженной бесконечной плоскости.

Введем понятие поверхностной плотности заряда >0, численно равной заряду единицы площади:

В силу однородности и изотропности пространства силовые линии поля равномерно заряженной бесконечной плоскости должны быть перпендикулярными к ней и иметь равномерную густоту, что соответствует определению однородности поляЕ =const. В качестве "удобной" замкнутой поверхности выберем прямой цилиндр, боковая поверхность которого параллельна силовым линиям (везде на ней 0 и, следовательно, поток сквозь нее равен 0), а торцевые поверхности площадью S - параллельны заряженной плоскости (так что везде на них 1):



Поток однородного поля Е сквозь обе перпендикулярные ему торцевые поверхности S равен просто Е 2S, а заряд, сосредоточенный на участке площадью S заряженной поверхности, равен S:

Поверхностная плотность заряда на произвольной плоскости площадью S определяется по формуле:

где dq – заряд, сосредоточенный на площади dS ; dS – физически бесконечно малый участок поверхности.

Пусть σ во всех точках плоскости S одинакова. Заряд q – положительный. Напряженность во всех точках будет иметь направление, перпендикулярное плоскости S (рис. 2.11).

Очевидно, что в симметричных, относительно плоскости точках, напряженность будетодинакова по величине и противоположна по направлению.

Представим себе цилиндр с образующими, перпендикулярными плоскости, и основаниями ΔS , расположенными симметрично относительно плоскости (рис. 2.12).


Рис. 2.11 Рис. 2.12

Применим теорему Остроградского-Гаусса. Поток Ф Е через боковую часть поверхности цилиндра равен нулю, т.к. Дляоснования цилиндра

Суммарный поток через замкнутую поверхность (цилиндр) будет равен:

Внутри поверхности заключен заряд . Следовательно, из теоремы Остроградского–Гаусса получим:

;

откуда видно, что напряженность поля плоскости S равна:

Электростатическое поле обладает важным свойством: Работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только положением начальной и конечной точек и величиной заряда. Аналогичным свойством обладает и гравитационное поле, и в этом нет ничего удивительного, так как гравитационные и кулоновские силы описываются одинаковыми соотношениями. Следствием независимости работы от формы траектории является следующее утверждение: Работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю. Силовые поля, обладающие этим свойством, называют потенциальными или консервативными . На рис. 1.4.2 изображены силовые линии кулоновского поля точечного заряда Q и две различные траектории перемещения пробного заряда q из начальной точки (1) в конечную точку (2). На одной из траекторий выделено малое перемещение Работа ΔA кулоновских сил на этом перемещении равна

Полученный результат не зависит от формы траектории. На траекториях I и II, изображенных на рис. 1.4.2, работы кулоновских сил одинаковы. Если на одной из траекторий изменить направление перемещения заряда q на противоположное, то работа изменит знак. Отсюда следует, что на замкнутой траектории работа кулоновских сил равна нулю.

Если электростатическое поле создается совокупностью точечных зарядов то при перемещении пробного заряда q работа A результирующего поля в соответствии спринципом суперпозиции будет складываться из работ кулоновских полей точечных зарядов: Так как каждый член суммы не зависит от формы траектории, то и полная работа A результирующего поля не зависит от пути и определяется только положением начальной и конечной точек.

Свойство потенциальности электростатического поля позволяет ввести понятие потенциальной энергии заряда в электрическом поле. Для этого в пространстве выбирается некоторая точка (0), и потенциальная энергия заряда q , помещенного в эту точку, принимается равной нулю.

Потенциальная энергия заряда q , помещенного в любую точку (1) пространства, относительно фиксированной точки (0) равна работе A 10 , которую совершит электростатическое поле при перемещении заряда q из точки (1) в точку (0):

W p1 = A 10 .

(В электростатике энергию принято обозначать буквой W , так как буквой E обозначают напряженность поля.)

Так же, как и в механике, потенциальная энергия определена с точностью до постоянной величины, зависящей от выбора опорной точки (0). Такая неоднозначность в определении потенциальной энергии не приводит к каким-либо недоразумениям, так как физический смысл имеет не сама потенциальная энергия, а разность ее значений в двух точках пространства.


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет


ПОИСК ПО САЙТУ:

Пример 1 . Тонкая, бесконечно длинная нить заряжена однородно с линейной плотностью заряда λ . Найти напряженность электростатического поля Е (r ) на произвольном расстоянии r от нити.

Сделаем рисунок:

Анализ:

Т.к. нить несет не точечный заряд, применим метод ДИ. Выделим бесконечно малый элемент длины проводника dl , который будет содержать заряд dq =dlλ . Рассчитаем напряженность поля, созданного каждым элементом проводника в произвольной точке А, находящейся от нити на расстоянии а . Вектор будет направлен вдоль прямой, соединяющей точечный заряд с точкой наблюдения. Результирующее поле получим по нормали к нити вдоль оси х. Необходимо найти величину dE x : dE x = dE cosα ..

По определению:

.

Величина dl , r , меняются согласованно при изменении положения элемента dl . Выразим их через величину α:

где – бесконечно малое приращение угла α в результате поворота радиуса-вектора относительно точки А при перемещении по нити на dl . Тогда dl= r 2 dα/ а . При перемещении dl от до точки О угол меняется от 0 0 до π/2.

Следовательно .

Проверка размерности:[Е]=В/м=кгм/мфм=КлВ/Клм=В/м;

Ответ: .

Способ 2.

В силу аксиальной симметрии распределения заряда, все точки, расположены на равном расстоянии от нити, эквивалентны и напряженность поля в них одинакова, т. е. Е (r )=const, где r - расстояние от точки наблюдения до нити. Направление Е в этих точках всегда совпадает с направлением нормали к нити. По теореме Гаусса ; где Q -заряд, охваченный поверхностью – S’ через которую вычисляется поток, выберем в виде цилиндра радиусом а и образующей с нитью. Учитывая, что нормален боковой поверхности цилиндра, получим для потока:

Т. к. Е =const.

S бок.пов. =На 2π .

С другой стороны Е 2πаН=Q/ε 0 ,

где λН=q .

Ответ: Е =λ /4πε 0 а .

Пример 2 . Рассчитать напряженность равномерно заряженной бесконечной плоскости с поверхностной плотностью зарядов σ .

Линии напряженности перпендикулярны и направлены в обе стороны от плоскости. В качестве замкнутой поверхности выберем поверхность цилиндра, основания которого параллельны плоскости, а ось цилиндра перпендикулярна плоскости. Т.к. образующие цилиндра параллельны линиям напряженности (α=0, cos α=1), то поток вектора напряженности сквозь боковую поверхность равна нулю, а полный поток сквозь замкнутую цилиндрическую поверхность равен сумме потоков сквозь его основание. Заряд, заключенный внутри замкнутой поверхности равен σS осн. , тогда:

Ф Е =2Е S осн или Ф Е = = , тогда E = =

Ответ: E =, не зависит от длинны цилиндра и на любых расстояниях от плоскости одинакова по модулю. Поле равномерно заряженной плоскости однородно.

Пример 3 . Рассчитать поле двух бесконечно заряженных плоскостей, с поверхностной плотностью +σ и –σ соответственно.

E = E = 0 ; E = E + + E - = .

Ответ: Результирующая напряженность поля в области между плоскостями равна E =, а вне объема, ограниченного плоскостями равняется нулю.

Пример 4 . Рассчитать напряженность поля равномерно заряженной с поверхностной плотностью заряда +σ сферической поверхности радиуса R .

То , и ,

если r < R , то внутри замкнутой поверхности нет зарядов и электростатическое поле отсутствует (Е=0).

Ответ: .

Пример 5 . Рассчитать напряженность объемно заряженной с объемной плотностью ρ , шара радиусам R .

В виде замкнутой поверхности возьмем сферу.

Если r R , то = 4πr 2 E ; E =

если r < R , то сфера радиусом r , охватывает заряд q" равный q"= (так как заряды относятся как объёмы, а объёмы, как кубы радиусов)

Тогда по т.Гаусса

Ответ: ; внутри равномерно заряженного шара напряжённость растет линейно с расстоянием r от его центра, а вне - убывает обратно пропорционально r 2 .

Пример № 6 . Рассчитать напряжённость поля бесконечного, круглого цилиндра, заряженного с линейной плотностью заряда λ , радиуса R .

Поток вектора напряженности сквозь торцы цилиндра равен 0, а сквозь боковую поверхность:

Т.к. , или ,

тогда (если r > R )

если λ > 0, Е > 0 , вектор Ē направлен от цилиндра,

если λ < 0, Е < 0 , вектор Ē направлен к цилиндру.

Если r < R, то замкнутая поверхность зарядов внутри не содержит, поэтому в этой области Е = 0

Ответ: (r > R ) ; E = 0 (R >r ). Внутри равномерно заряженного по поверхности бесконечного, круглого цилиндра, поля нет.

Пример 7 . Электрическое поле создано двумя бесконечно длинными параллельными плоскостями с поверхностными плоскостями зарядов 2 нКл/м 2 и 4нКл/м 2 . Определить напряжённость поля в областях І, ІІ, ІІІ. Построить график зависимости Ē (r ) .

Плоскости делят пространство на 3 области

Направление Ē результирующего поля в сторону большего.

В проекции на r :

; «–»;;

; «–»;;

; «+»;.

График Ē (r )

Выбор масштаба: Е 2 =2 Е 1

Е 1 = 1; Е 2 =2

Ответ: Е І = –345 В/м; Е І I = –172 В/м; Е І II = 345 В/м.

Пример № 8 . Эбонитовый сплошной шар радиусом R = 5 см несет заряд, равномерно распределенный с объёмной плотностью ρ =10 нКл/м 3 . Определить напряженность электрического поля в точках: 1) на расстоянии r 1 = 3 см от центра сферы; 2) на поверхности сферы; 3) на расстоянии r 2 = 10 см от центра сферы.

8. Электростатическое поле создается равномерно заряженной бесконечной плоскостью. Покажите, что это поле является однородным.

Пусть поверхностная плотность заряда равна s. Очевидно что вектор Е может быть только перпендикулярным заряженной плоскости. Кроме того очевидно, что в симметричных относительно этой плоскости точках вектор Е одинаков по модулю и противоположен по направлению. Такая конфигурация поля подсказывает, что в качестве замкнутой поверхности следует выбрать прямой цилиндр, где предполагается что s больше нуля. Поток сквозь боковую поверхность этого цилиндра равен нулю, и поэтому полный поток через всю поверхность цилиндра будет равным 2*Е*DS, где DS – площадь каждого торца. Согласно теореме Гаусса

где s*DS – заряд заключенный внутри цилиндра.

Точнее это выражение следует записать так:

где Еn – проекция вектора Е на нормаль n к заряженной плоскости, причем вектор n направлен от этой плоскости.

Тот факт, что Е не зависит от расстояния до плоскости, означает, что соответствующее электрическое поле является однородным.


9. Из медной проволоки изготовлена четверть окружности радиусом 56 см. По проволоке равномерно распределен заряд с линейной плотностью 0,36 нКл/м. Найдите потенциал в центре окружности.

Так как заряд линейно распределен по проволоке для нахождения потенциала в центре воспользуемся формулой:

Где s - линейная плотность заряда, dL – элемент проволоки.


10. В электрическом поле, созданном точечным зарядом Q, по силовой линии из точки расположенной на расстоянии r 1 от заряда Q в точку, расположенную на расстоянии r 2 , перемещается отрицательный заряд -q. Найдите приращение потенциальной энергии заряда -q на этом перемещении.

По определению потенциал – это величина, численно равная потенциальной энергии единичного положительного заряда в данной точке поля. Следовательно потенциальная энергия заряда q 2:


11. Два одинаковых элемента с э.д.с. 1,2 В и внутренним сопротивлением 0,5 Ом соединены параллельно. Полученная батарея замкнута на внешнее сопротивление 3,5 Ом. Найдите силу тока во внешней цепи.

Согласно закону Ома для всей цепи сила тока во внешней цепи:

Где E` - ЭДС батареи элементов,

r` - внутреннее сопротивление батареи, которое равно:

ЭДС батареи равна сумме ЭДС трех последовательно соединенных элементов:

Следовательно:


12 В электрическую цепь включены последовательно медная и стальная проволоки равной длины и диаметра. Найдите отношение количеств тепла выделяющегося в этих проволоках.

Рассмотрим проволоку длиной L и диаметром d, изготовленную из материала с удельным сопротивление p. Сопротивление проволоки R можно найти по формуле

Где s= – площадь поперечного сечения проволоки. При силе тока I за время t в проводнике выделяется количество теплоты Q:

При этом, падение напряжения на проволоке равно:

Удельное сопротивление меди:

p1=0.017 мкОм*м=1.7*10 -8 Ом*м

удельное сопротивление стали:

p2=10 -7 Ом*м

так как проволоки включены последовательно, то силы тока в них одинаковы и за время t в них выделяются количества теплоты Q1 и Q2:


12. В однородном магнитном поле находится круговой виток с током. Плоскость витка перпендикулярна силовым линиям поля. Докажите, что результирующая сил, действующих со стороны магнитного поля на контур, равна нулю.

Так как круговой виток с током находится в однородном магнитном поле, на него действует сила Ампера. В соответствии с формулой dF=I результирующая амперова сила, действующая на виток с током определяется:

Где интегрирование проводится по данному контуру с током I. Так как магнитное поле однородно, то вектор В можно вынести из-под интеграла и задача сволится к вычислению векторного интеграла . Этот интеграл представляет замкнутую цепочку элементарных векторов dL, поэтому он равен нулю. Значит и F=0, то есть результирующая амперова сила равна нулю в однородном магнитном поле.


13. По короткой катушке, содержащей 90 витков диаметром 3 см, идет ток. Напряженность магнитного поля, созданного током на оси катушки на расстоянии 3 см от нее равна 40 А/м. Определите силу тока в катушке.

Считая, что магнитная индукция в точке А есть суперпозиция магнитных индукций, создаваемых каждым витком катушки в отдельности:

Для нахождения В витка воспользуемся законом Био-Савара-Лапласа.

Где, dBвитка – магнитная индукция поля, создаваемая элементом тока IDL в точке, определяемой радиус-вектором r Выделим на конце элемент dL и от него в точку А проведем радиус-вектор r. Вектор dBвитка направим в соответствие с правилом буравчика.

Согласно принципу суперпозиции:

Где интегрирование ведется по всем элементам dLвитка. Разложим dBвитка на две составляющие dBвитка(II) – параллельную плоскости кольца и dBвитка(I) – перпендикулярную плоскости кольца. Тогда

Заметив, что из соображений симметрии и что векторы dBвитка(I) сонаправленные, заменим векторное интегрирование скалярным:

Где dBвитка(I) =dBвитка*cosb и

Поскольку dl перпендикулярен r

Сократим на 2p и заменим cosb на R/r1

Выразим отсюда I зная что R=D/2

согласно формуле связывающей магнитную индукцию и напряженность магнитного поля:

тогда по теореме Пифагора из чертежа:


14. В однородное магнитное поле в направлении перпендикулярном силовым линиям влетает электрон со скоростью 10۰10 6 м/с и движется по дуге окружности радиусом 2,1 см. Найдите индукцию магнитного поля.

На электрон, движущийся в однородном магнитном поле будет действовать сила Лоренца, перпендикулярная скорости электрона и следовательно направленная к центру окружности:

Так как угол между v и И равен 90 0:

Так как сила Fл направлена к центру окружности, и электрон двигается по окружности под действием этой силы, то

Выразим магнитную индукцию:


15. Квадратная рамка со стороной 12 см, изготовленная из медной проволоки, помещена в магнитное поле, магнитная индукция которого меняется по закону В=В 0 ·Sin(ωt), где В 0 =0,01 Тл, ω=2·π/Т и Т=0,02 с. Плоскость рамки перпендикулярна к направлению магнитного поля. Найдите наибольшее значение э.д.с. индукции, возникающей в рамке.

Площадь квадратной рамки S=a 2 . Изменение магнитного потока dj, при перпендикулярности плоскости рамки dj=SdB

ЭДС индукции определяется

Е будет максимальна при cos(wt)=1