Шпаргалки        02.01.2022   

Волны в дискретной цепочке. Поляризация волн

Волны в дискретной цепочке. Поляризация волн. Скорость поперечной волны. Плотность кинетической энергии бегущей водны.

Волны.

С давних пор наглядный образ волны всегда ассоциировался с волнами на поверхности воды. Но волны на воде представляют собой значительно более сложное явление, чем многие другие волновые процессы - такие, как распространение звука в однородной изотропной среде. Поэтому естественно начинать изучение волнового движения не с волн на воде, а с более простых случаев.


Волны в дискретной цепочке.

Проще всего представить себе волну, распространяющуюся по бесконечной цепочке связанных маятников (рис. 192). С бесконечной цепочки мы начинаем для того, чтобы можно было рассматривать волну, распространяющуюся в одном направлении, и не думать о возможном ее отражении от конца цепочки.

Рис. 192. Волна в цепочке связанных маятников Если маятник, находящийся в начале цепочки, привести в гармоническое колебательное движение с некоторой частотой со и амплитудой А, то колебательное движение будет распространяться по цепочке. Такое распространение колебаний из одного места в другое и называется волновым процессом или волной. В отсутствие затухания любой другой маятник в цепочке будет повторять вынужденные колебания первого маятника с некоторым отставанием по фазе. Это запаздывание связано с тем, что распространение колебаний по цепочке происходит с некоторой конечной скоростью. Скорость распространения колебаний и зависит от жесткости соединяющей маятники пружинки, от того, насколько сильна связь между маятниками. Если первый маятник в цепочке движется по определенному закону, его смешение из положения равновесия есть заданная функция времени, то смещение маятника, отстоящего от начала цепочки на расстояние, в любой момент времени будет точно таким же, как смешение первого маятника в более ранний момент времени будет описываться функцией. Пусть при гармонических колебаниях первого маятника его смещение из положения равновесия дается выражением. Каждый из маятников цепочки характеризуется тем расстоянием, на которое он отстоит от начала цепочки. Поэтому его смещение из положения равновесия при прохождении волны естественно обозначить через. Тогда, в соответствии со сказанным выше, имеем Описываемая уравнением волна называется монохроматической. Характерным признаком монохроматической волны является то, что каждый из маятников совершает синусоидальное колебание определенной частоты. Распространение волны по цепочке маятников сопровождается переносом энергии и импульса. Но никакого переноса массы при этом не происходит: каждый маятник, совершая колебания около положения равновесия, в среднем остается на месте.


Поляризация волн. В зависимости от того, в каком направлении происходят колебания маятников, говорят о волнах разной поляризации. Если колебания маятников происходят вдоль направления распространения волны, как на рис. 192, то волна называется продольной, если поперек - то поперечной. Обычно волны разной поляризации распространяются с разными скоростями. Рассмотренная цепочка связанных маятников представляет собой пример механической системы с сосредоточенными параметрами.

Другой пример системы с сосредоточенными параметрами, в которой могут распространяться волны, это цепочка шариков, связанных легкими пружинками (рис. 193). В такой системе инертные свойства сосредоточены у шариков, а упругие у пружинок. При распространении волны кинетическая энергия колебаний локализована на шариках, а потенциальная - на пружинках. Легко сообразить, что такую цепочку соединенных пружинками шариков можно рассматривать как модель одномерной системы с распределенными параметрами, например упругой струны. В струне каждый элемент длины обладает одновременно массой, инертными свойствами, и жесткостью, упругими свойствами. Волны в натянутой струне. Рассмотрим поперечную монохроматическую волну, распространяющуюся в бесконечной натянутой струне. Предварительное натяжение струны необходимо потому, что ненатянутая гибкая струна, в отличие от твердого стержня, обладает упругостью только по отношению к деформации растяжения, но не сжатия. Монохроматическая волна в струне описывается тем же выражением, что и волна в цепочке маятников. Однако теперь роль отдельного маятника играет каждый элемент струны, поэтому переменная в уравнении, характеризующая равновесное положение маятника, принимает непрерывные значения. Смещение любого элемента струны из равновесного положения при прохождении волны есть функция двух переменны времени и равновесного положения этого элемента. Если в формуле зафиксировать рассматривать определенный элемент струны, то функция при фиксированном дает смещение выделенного элемента струны в зависимости от времени. Это смешение представляет собой гармоническое колебание с частотой со и амплитудой. Начальная фаза колебаний этого элемента струны зависит от его равновесного положения. Все элементы струны при прохождении монохроматической волны совершают гармонические колебания одинаковой частоты и амплитуды, но различающиеся по фазе.


Длина волны.

Если в формуле зафиксировать, рассматривать всю струну в один и тот же момент времени, то функция при фиксированном дает мгновенную картину смещений всех элементов струны как бы моментальную фотографию волны. На этой «фотографии» мы увидим застывшую синусоиду (рис. 194). Период этой синусоиды, расстояние между соседними горбами или впадинами, называется длиной волны. Из формулы можно найти, что длина волны связана с частотой со и скоростью волны и соотношением период колебаний. Картину распространения волны можно представить себе, если эту «застывшую» синусоиду привести в движение вдоль оси со скоростью.


Рис. 194. Смещение разных точек струны в один и тот же момент времени. Рис. 195. Картины смещений точек струны в момент времени. Две последовательные «моментальные фотографии» волны в моменты времени показаны на рис. 195. Видно, что длина волны равна расстоянию, проходимому любым горбом за период колебаний в соответствии с формулой.


Скорость поперечной волны.

Определим скорость распространения монохроматической поперечной волны в струне. Будем считать, что амплитуда мала по сравнению с длиной волны. Пусть волна бежит вправо со скоростью и. Перейдем в новую систему отсчета, движущуюся вдоль струны со скоростью, равной скорости волны и. Эта система отсчета также является инерциальной и, следовательно, в ней справедливы законы Ньютона. Из этой системы отсчета волна кажется застывшей синусоидой, а вещество струны скользит вдоль этой синусоиды влево: любой предварительно окрашенный элемент струны будет казаться убегающим вдоль синусоиды влево со скоростью.

Рис. 196. К расчету скорости распространиния волны в струне. Рассмотрим в этой системе отсчета элемент струны длины, которая много меньше длины волны, в тот момент, когда он находится на гребне синусоиды (рис. 196). Применим к этому элементу второй закон Ньютона. Силы, действующие на элемент со стороны соседних участков струны, показаны в выделенном кружке на рис. 196. Поскольку рассматривается поперечная волна, в которой смещения элементов струны перпендикулярны направлению распространения волны, то горизонтальная составляющая силы натяжения. жения постоянна вдоль всей струны. Так как длина рассматриваемого участка, то направления сил натяжения, действующих на выделенный элемент, почти горизонтальны, а их модуль можно считать равным. Равнодействующая этих сил направлена вниз и равна. Скорость рассматриваемого элемента равна и и направлена влево, а малый участок его синусоидальной траектории вблизи горба можно считать дугой окружности радиуса. Поэтому ускорение этого элемента струны направлено вниз и равно. Массу элемента струны можно представить в виде плотность материала струны, a площадь сечения, которые ввиду малости деформаций при распространении волны можно считать такими же, как и в отсутствие волны. На основании второго закона Ньютона. Это и есть искомая скорость распространения поперечной монохроматической волны малой амплитуды в натянутой струне. Видно, что она зависит только от механического напряжения натянутой струны и ее плотности и не зависит от амплитуды и длины волны. Это значит, что поперечные волны любой длины распространяются в натянутой струне с одинаковой скоростью. Если в струне одновременно распространяются, например, две монохроматические волны с одинаковыми амплитудами и близкими частотами со, то «моментальные фотографии» этих монохроматических волн и результирующей волны будут иметь вид, показанный на рис. 197.


Там, где горб одной волны совпадает с горбом другой, в результирующей волне смешение максимально. Поскольку соответствующие отдельным волнам синусоиды бегут вдоль оси z с одинаковой скоростью и, то и результирующая кривая бежит с той же самой скоростью, не меняя своей формы. Оказывается, что это справедливо для волнового возмущения любой формы: поперечные волны произвольного вида распространяются в натянутой струне, не меняя своей формы. О дисперсии волн. Если скорость распространения монохроматических волн не зависит от длины волны или частоты, то говорят, что отсутствует дисперсия. Сохранение формы любой волны при ее распространении есть следствие отсутствия дисперсии. Дисперсия отсутствует для волн любого вида, распространяющихся в сплошных упругих средах. Это обстоятельство позволяет очень легко найти скорость продольных волн.


Скорость продольных волн.

Рассмотрим, например, длинный упругий стержень площади, в котором распространяется продольное возмущение с крутым передним фронтом. Пусть в некоторый момент времени этот фронт, перемещаясь со скоростью, дошел до точки с координатой справа от фронта все точки стержня еще покоятся. Спустя промежуток времени фронт переместится вправо на расстояние (рис. 198). В пределах этого слоя все частицы движутся с одной и той же скоростью. Спустя этот промежуток времени частицы стержня, находившиеся в момент на фронте волны, переместятся вдоль стержня на расстояние. Применим к вовлеченной за время в волновой процесс массе стержня закон сохранения импульса. Действующую на массу выразим через деформацию элемента стержня с помощью закона Гука. Длина выделенного элемента стержня равна, а изменение его длины под действием силы равно. Поэтому с помощью находим Подставляя это значение в, получаем Скорость продольных звуковых волн в упругом стержне зависит только от модуля Юнга и плотности. Легко убедиться, что в большинстве металлов эта скорость составляет примерно. Скорость продольных волн в упругой среде всегда больше скорости поперечных. Сравним, например, скорости продольных и поперечных волн и(в натянутой гибкой струне. Поскольку при малых деформациях упругие постоянные не зависят от приложенных сил, то скорость продольных волн в натянутой струне не зависит от ее предварительного натяжения и определяется формулой. Для того чтобы сравнить эту скорость с найденной ранее скоростью поперечных волн иг выразим силу натяжения струны, входящую в формулу, через относительную деформацию струны обусловленную этим предварительным натяжением. Подставляя значение в формулу, получаем Таким образом, скорость поперечных волн в натянутой струне ut оказывается значительно меньше скорости продольных волн, так как относительное растяжение струны е много меньше единицы. Энергия волны. При распространении волн происходит передача энергии без переноса вещества. Энергия волны в упругой среде состоит из кинетической энергии совершающих колебания частиц вещества и из потенциальной энергии упругой деформации среды. Рассмотрим, например, продольную волну в упругом стержне. В фиксированный момент времени кинетическая энергия распределена по объему стержня неравномерно, так как одни точки стержня в этот момент покоятся, другие, напротив, движутся с максимальной скоростью. То же самое справедливо и для потенциальной энергии, так как в этот момент какие-то элементы стержня не деформированы, другие же деформированы максимально. Поэтому при рассмотрении энергии волны естественно вводить плотность кинетической и потенциальной энергий. Плотность энергии волны в каждой точке среды не остается постоянной, а периодически изменяется при прохождении волны: энергия распространяется вместе с волной.

Почему при распространении поперечной волны в натянутой струне продольная составляющая силы натяжения струны одинакова вдоль всей струны и не изменяется при прохождении волны?

Что такое монохроматические волны? Как длина монохроматической волны связана с частотой и скоростью распространения? В каких случаях волны называются продольными и в каких поперечными? Покажите с помощью качественных рассуждений, что скорость распространения волны тем больше, чем больше сила, стремящаяся возвратить возмущенный участок среды в состояние равновесия, и тем меньше, чем больше инертность этого участка. Какими характеристиками среды определяется скорость продольных волн и скорость поперечных волн? Как связаны между собой скорости таких волн в натянутой струне?


Плотность кинетической энергии бегущей волны.

Рассмотрим плотность кинетической энергии в монохроматической упругой волне, описываемой уравнением. Выделим в стержне малый элемент между плоскостями такой, что его длина в недеформированном состоянии много меньше длины волны. Тогда скорости всех частиц стержня в этом элементе при распространении волны можно считать одинаковыми. С помощью формулы находим скорость, рассматривая как функцию времени и считая величину, характеризующую положение рассматриваемого элемента стержня, фиксированной. Масса выделенного элемента стержня, поэтому его кинетическая энергия в момент времени есть С помощью выражения находим плотность кинетической энергии в точке в момент времени. Плотность потенциальной энергии. Перейдем к вычислению плотности потенциальной энергии волны. Поскольку длина выделенного элемента стержня мала по сравнению с длиной волны, то вызываемую волной деформацию этого элемента можно считать однородной. Поэтому потенциальную энергию деформации можно записать в виде удлинение рассматриваемого элемента стержня, вызванное проходящей волной. Для нахождения этого удлинения нужно рассмотреть положение плоскостей, ограничивающих выделенный элемент, в некоторый момент времени. Мгновенное положение любой плоскости, равновесное положение которой характеризуется координатой, определяется функцией, рассматриваемой как функция при фиксированном. Поэтому удлинение рассматриваемого элемента стержня, как видно из рис. 199, равно Относительное удлинение этого элемента есть Если в этом выражении перейти к пределу при, то оно превращается в производную функции по переменной при фиксированном. С помощью формулы получаем

Рис. 199. К расчету относительного удлинения стержня Теперь выражение для потенциальной энергии принимает вид а плотность потенциальной энергии в точке в момент времени есть Энергия бегущей волны. Поскольку скорость распространения продольных волн, то правые части в формулах совпадают. Это значит, что в бегущей продольной упругой волне плотности кинетической и потенциальной энергий равны в любой момент времени в любой точке среды. Зависимость плотности энергии волны от координаты в фиксированный момент времени показана на рис. 200. Обратим внимание на то, что в отличие от локализованных колебаний (осциллятор), где кинетическая и потенциальная энергии изменяются в противофазе, в бегущей волне колебания кинетической и потенциальной энергий происходят в одинаковой фазе. Кинетическая и потенциальная энергии в каждой точке среды одновременно достигают максимальных значений и одновременно обращаются в нуль. Равенство мгновенных значений плотности кинетической и потенциальной энергий есть общее свойство бегущих волн волн, распространяющихся в определенном направлении. Можно убедиться, что это справедливо и для поперечных волн в натянутой гибкой струне. Рис. 200. Смещение частиц среды и плотность энергии в бегущей волне

До сих пор мы рассматривали волны, распространяющиеся в системе, имеющей бесконечную протяженность только по одному направлению: в цепочке маятников, в струне, в стержне. Но волны могут распространяться и в среде, имеющей бесконечные размеры по всем направлениям. В такой сплошной среде волны бывают разного вида в зависимости от способа их возбуждения. Плоская волна. Если, например, волна возникает в результате гармонических колебаний бесконечной плоскости, то в однородной среде она распространяется в направлении, перпендикулярном этой плоскости. В такой волне смещение всех точек среды, лежащих на любой плоскости, перпендикулярной направлению распространения, происходит совершенно одинаково. Если в среде не происходит поглощения энергии волны, то амплитуда колебаний точек среды всюду одинакова и их смещение дается формулой. Такая волна называется плоской.


Сферическая волна.

Волну другого вида сферическую создает в однородной изотропной упругой среде пульсирующий шар. Такая волна распространяется с одинаковой скоростью по всем направлениям. Ее волновые поверхности, поверхности постоянной фазы, представляют собой концентрические сферы. В отсутствие поглощения энергии в среде легко определить зависимость амплитуды сферической волны от расстояния до центра. Поскольку поток энергии волны, пропорциональный квадрату амплитуды, одинаков через любую сферу, амплитуда волны убывает обратно пропорционально расстоянию от центра. Уравнение продольной сферической волны имеет вид где амплитуда колебаний на расстоянии от центра волны.

Как зависит переносимая бегущей волной энергия от частоты и от амплитуды волны?

Что такое плоская волна? Сферическая волна? Как зависят от расстояния амплитуды плоской и сферической волн?

Объясните, почему в бегущей волне кинетическая энергия и потенциальная энергия изменяются в одинаковой фазе.

Любое локальное нарушение горизонтальности поверхности жидкости приводит к появлению волн, которые распространяются по поверхности и быстро затухают с глубиной. Возникновение волн происходит из-за совместного действия силы тяжести и силы инерции (гравитационные гидродинамические волны) или силы поверхностного натяжения и силы инерции (капиллярные волны).

Приведем ряд результатов по гидродинамике поверхностного волнения жидкости, которые понадобятся нам в дальнейшем . Можно существенно упростить задачу, если считать жидкость идеальной; учет диссипации необходим главным образом для капиллярных и коротких гравитационных волн.

Считая смещения частиц жидкости малыми, можно ограничиться линейной задачей и пренебречь в уравнении Эйлера нелинейным членом что соответствует малости амплитуды волны по сравнению с ее длиной X. Тогда для несжимаемой жидкости волновое движение на ее поверхности без учета сил поверхностного натяжения определяется такой системой уравнений для потенциала (напомним, что :

Направлена вертикально вверх и соответствует невозмущенной поверхности жидкости).

Для неограниченной поверхности жидкости, глубина которой значительно больше длины волны, можно искать решение задачи в виде распространяющейся в положительном направлении х и затухающей с глубиной плоской неоднородной волны:

где - частота волны и волновое число, где - фазовая скорость. Подставляя это значение потенциала в уравнение (6.1), а также учитывая, что решения имеют смысл для , получаем выражение для потенциала:

а удовлетворяя граничному условию на поверхности жидкости дисперсионное уравнение

Таким образом, групповая скорость распространения гравитационной волны

тогда как фазовая скорость такой волны

Как видно, гравитационные волны обладают дисперсией; с увеличением длины волны их фазовая скорость растет.

Интересен вопрос о том, каково распределение скоростей частиц жидкости в волне; оно находится дифференцированием потенциала (6.3) по х.

Рис. 1.4. Дисперсионная кривая для гравитационно-капиллярных волн на поверхности глубокой воды в области, где существенны и g, и а.

Рассмотрение показывает, что частицы жидкости в волне описывают движение приблизительно по окружности (вокруг своих равновесных точек ), радиус которых экспоненциально спадает с глубиной. На глубине, равной одной длине волны, ее амплитуда примерно в 535 раз меньше, чем вблизи поверхности. Приведенные результаты относились к волнам на глубокой воде, когда где h - глубина жидкости. Если имеет место противоположный случай (например, волны распространяются в канале конечной, но малой глубины), то

Как видно, такие волны дисперсией не обладают.

С учетом капиллярной силы Лапласа, обусловленной поверхностным натяжением 0,

т. е., в отличие от гравитационных, скорость капиллярных волн растет с уменьшением длины волны. Совместное действие силы тяжести и силы поверхностного натяжения определяется таким дисперсионным уравнением (глубокая вода):

На рис. 1.4 показана зависимость фазовой скорости распространения волн на поверхности жидкости от длины волны для воды согласно выражению (6.9). Из этого рисунка видно, что при см имеет место минимум скорости поверхностных волн, являющихся смешанными гравитационно-капиллярными волнами..

Приведенные результаты относились к одномерным линейным волнам в отсутствие диссипации. Кроме того, считалось, что волны регулярные и распространяются в одном направлении. Волны, возникающие при движении корабля в спокойной воде или при подходе к мелкому берегу, действительно представляют собой

регулярные возмущения. Волны же на поверхности жидкости, возникающие под действием ветра, преимущественно случайные - они движутся в разных направлениях и имеют разные частоты и амплитуды; именно такую картину мы наблюдаем, находясь на корабле в открытом море в ветренную погоду.

Затухание гравитационных волн с длинами волн более метра мало, но оно все же значительно больше, чем это следует из линейной теории. Это расхождение, очевидно, вызвано процессами, связанными с нелинейностью при распространении гравитационных и капиллярных волн. Так, если одиночная волна распространяется на мелкой воде с фазовой скоростью , то такая волна не обладает дисперсией. Ее профиль по мере распространения становится круче благодаря тому, что верхние частицы среды, для которых глубина h больше, чем для нижних частиц, будут двигаться с большей скоростью, согласно (6.7), и волна начнет захлестываться; при подходе к берегу волна обрушивается на него. Эффект захлестывания усиливается еще и потому, что при уменьшении глубины h возрастает амплитуда волны по закону сохранения лотока энергии плотность энергии возрастает из-за уменьшения поперечного сечения слоя воды. С ростом же нелинейные эффекты проявляются еще сильнее. Процесс «укручения» волн при их распространении происходит и на глубокой воде вследствие нелинейности уравнений движения. Теория нелинейных волн на ловерхности жидкости получила большое развитие в последнее время, хотя первые работы в этом направлении были сделаны еще в конце прошлого века.

Если имеется несколько волн, они нелинейно взаимодействуют друг с другом; принцип суперпозиции для волн конечной амплитуды уже не соблюдается. Условия нелинейного взаимодействия гравитационных волн, благодаря их дисперсионным свойствам, отличаются интересными особенностями, на которых мы здесь не имеем возможности остановиться. Отметим лишь, что реально существующее взаимодействие случайных волн конечной амплитуды в принципе объясняет значительно большее затухание волн на поверхности, чем это предсказывает линейная теория. Действует механизм поглощения за счет нелинейного взаимодействия; энергия из области малых волновых чисел (длинные волны) перекачивается в области все меньших длин волн и, наконец, - в капиллярную область спектра, где она в конечном счете диссипируется за счет вязкости, переходя в тепло .

В гл. 3 мы будем иметь дело с нелинейными звуковыми волнами и еще вернемся к вопросам взаимодействия волн на поверхности жидкости.


Если в каком-либо месте упругой (твердой, жидкой или газообразной) среды возбудить колебания ее частиц, то вследствие взаимодействия между частицами это колебание будет распространяться в среде от частицы к частице с некоторой скоростью v . Процесс распространения колебаний в пространстве называется волной.

Механической волной называется процесс распространения колебаний в упругой среде, который сопровождается передачей энергии колеблющегося тела от одной точки упругой среды к другой.

Частицы среды, в которой распространяется упругая волна, не вовлекаются волной в поступательное движение, они лишь совершают колебания около своих положений равновесия. В зависимости от направления колебаний частиц по отношению к направлению распространения волны, различают продольные и поперечные волны.

1. Волна называется поперечной, если частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волн.

(волна на водной поверхности, волна вдоль шнура).

2. Волна называется продольной, если колебания частиц среды происходят в направлении распространения волны.

(звуковые волны, колебания поршня в трубке, заполненной газом или жидкостью, вызывают продольную упругую волну).

Упругие поперечные волны могут возникать лишь в среде, обладающей сопротивлением сдвигу. Поэтому в жидкой и газообразной средах возможно возникновение только продольных волн. В твердой среде возможно возникновение как продольных, так и поперечных волн.

Геометрическое место точек, до которых доходят колебания к моменту времени t , называется фронтом волны (или волновым фронтом ).

Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью. Волновую поверхность можно провести через любую точку пространства, охваченного волновым процессом. Следовательно, волновых поверхностей существует бесконечное множество, в то время как волновой фронт каждый момент времени только один. Волновые поверхности могут быть любой формы. В простейших случаях они имеют форму плоскости или сферы. Соответственно волна в этих случаях называется плоской или сферической.

Линия, перпендикулярная волновой поверхности называется лучом. Луч указывает направление распространения волны.

Расстояние , на которое распространяется волна за время, равное периоду колебания частиц среды, называется длиной волны:

v (м),

где v скорость волны, T период колебаний.

Длину волны можно определить также как расстояние между ближайшими точками среды, колеблющихся с разностью фаз, равной 2 .

Скорость волны v .

Гармоническая волна

Гармонической волной называется линейная монохроматическая волна, распространяющаяся в бесконечной динамической системе. В распределённых системах общий вид волны задается уравнением:

где А – некоторая постоянная амплитуда волнового процесса, определяемая параметрами системы, частотой колебаний и амплитудой возмущающей силы; w = 2p/Т = 2pn – круговая частота волнового процесса, Т – период гармонической волны, n – частота; k = 2p/l = w/с – волновое число, l – длина волны, – скорость распространения волны; – начальная фаза волнового процесса, определяемая в гармонической волне закономерностью воздействия внешнего возмущения. Фазовая скорость этой волны даётся выражением

Бегущая волна

Бегущая волна – волна, которая при распространении в среде переносит энергию (в отличие от стоячей волны). Примеры: упругая волна в стержне, столбе газа, жидкости, электромагнитная волна вдоль длинной линии, в волноводе.

Бегущая гармоническая волна – частный случай стационарных бегущих волн, представляет собой распространяющиеся синусоидальные колебания, это простейшее волновое движение.

Звук

Колебания среды, воспринимаемые органом слуха, называются звуком.

Звук , в широком смысле – упругие волны, распространяющиеся в какой-либо упругой среде и создающие в ней механические колебания; в узком смысле – субъективное восприятие этих колебаний специальными органами чувств животных или человека.

Раздел физики, занимающийся изучением звуковых явлений, называется акустикой.

Звуковая волна – упругая продольная волна, представляющая собой зоны сжатия и разряжения упругой среды (воздуха), передающаяся на расстояние с течением времени.

Звуковые волны делятся:

· слышимый звук – от 20 Гц (17 м) - до 20 000 Гц (17 мм);

· инфразвук – ниже 20 Гц;

· ультразвук – выше 20 000 Гц.

Скорость звука зависит от упругих свойств среды и от температуры, например:

в воздухе v = 331 м/с (при t = 0 о С) и v = 3317 м/с (при t = 1 0 С);

в воде v = 1400 м/с;

в стали v =5000 м/с.

Звук, издаваемый гармонически колеблющимся телом, называется музыкальным тоном.

Каждому музыкальному тону (до, ре, ми, фа, соль, ля, си) соответствует определенная длина и частота звуковой волны.

Шум – хаотическая смесь тонов.

Интерференция волн

Если в среде распространяется несколько волн, то колебания частиц среды оказываются геометрической суммой колебаний, которые совершали бы частицы при распространении каждой из волн в отдельности. Волны накладываются друг на друга , не возмущая (не искажая друг друга ). Это и есть принцип суперпозиции волн.

Если две волны, приходящие в какую-либо точку пространства, обладают постоянной разностью фаз, такие волны называются когерентными. При сложении когерентных волн возникает явление интерференции.

Интерференция волн (от лат. inter - взаимно, между собой и ferio- ударяю, поражаю)- взаимное усиление или ослабление амплитуды двух или нескольких когерентных волн, одновременно распространяющихся в пространстве . Сопровождается чередованием максимумов и минимумов (пучностей) интенсивности в пространстве.

Результат интерференции (интерференционная картина) зависит от разности фаз накладывающихся волн. При интерференции энергия волн перераспределяется в пространстве. Это не противоречит закону сохранения энергии потому, что в среднем, для большой области пространства, энергия результирующей волны равна сумме энергий интерферирующих волн.

Необходимые условия для наблюдения интерференции:

1) волны должны иметь одинаковые (или близкие) частоты, чтобы картина, получающаяся в результате наложения волн, не менялась во времени (или менялась не очень быстро, что бы её можно было успеть зарегистрировать);

2) волны должны быть однонаправленными (или иметь близкое направление); две перпендикулярные волны никогда не дадут интерференции (попробуйте сложить две перпендикулярные синусоиды!). Иными словами, складываемые волны должны иметь одинаковые волновые векторы (или близконаправленные).

Первое условие иногда называют временной когерентностью ,
второе – пространственной когерентностью .

Интерференция характерна для волн любой природы.

Очень важный случай интерференции наблюдается при наложении двух встречных плоских волн с одинаковой амплитудой. Возникающий в результате колебательный процесс называется стоячей волной . Практически стоячие волны возникают при отражении от преград.

Интерференция волн на поверхности воды:

Стоячие волны

Очень важный случай интерференции наблюдается при наложении двух встречных плоских волн с одинаковой амплитудой. Практически стоячие волны возникают при отражении волн от преград. Падающая на преграду волна и бегущая ей навстречу отраженная волна, налагаясь друг на друга, дают стоячую волну.

Стоячая волна является частным случаем бегущей волны с .

То есть, две одинаковые периодические бегущие волны (в рамках справедливости принципа суперпозиции), распространяющиеся в противоположных направлениях, образуют стоячую волну.

При существовании в среде стоячей волны, существуют точки, амплитуда колебаний в которых равна нулю. Эти точки называются узлами стоячей волны. Точки, в которых колебания имеют максимальную амплитуду, называются пучностями.

ОПРЕДЕЛЕНИЕ

Бегущими волнами называются волны, которые переносят в пространстве энергию. Перенос энергии в волнах количественно характеризуется вектором плотности потока энергии. Этот вектор, называется вектором потока. (Для упругих волн – вектор Умова).

Теория про уравнение бегущей волны

Когда мы говорим о движении тела, то имеем в виду перемещение в пространстве его самого. В случае же волнового движения речь идет не о перемещении среды или поля, а о перемещении возбужденного состояния среды или поля. В волне определенное состояние, сначала локализованное в одном месте пространства, передается (перемещается) в другие, соседние точки пространства.

Состояние среды или поля в данной точке пространства характеризуется одним или несколькими параметрами. Такими параметрами, например, в волне, образуемой на струне, является отклонение данного участка струны от положения равновесия (х), в звуковой волне в воздухе — это величина, характеризующая сжатие или расширение , в — это модули векторов и . Важнейшим понятием для любой волны является фаза. Под фазой понимается состояние волны в данной точке и в данный момент времени, описанное соответствующими параметрами. Например, фаза электромагнитной волны задается модулями векторов и . Фаза от точки к точке меняется. Таким обpазом, фаза волны в математическом смысле есть функция координат и времени. С понятием фазы связано понятие волновой поверхности. Это поверхность, все точки которой в данный момент времени находятся в одной и той же фазе, т.е. это поверхность постоянной фазы.

Понятия волновой поверхности и фазы позволяют провести некоторую классификацию волн по характеру их поведения в пространстве и времени. Если волновые поверхности перемещаются в пространстве (например, обычные волны на поверхности воды), то волна называется бегущей.

Бегущие волны можно разделить на: и цилиндрические.

Уравнение бегущей плоской волны

В экспоненциальной форме уравнение сферической волны имеет вид:

где – комплексная амплитуда. Везде, кроме особой точки r=0, функция x удовлетворяет волновому уравнению .

Уравнение цилиндрическое бегущей волны:

где r – расстояние от оси.

где – комплексная амплитуда.

Примеры решения задач

ПРИМЕР 1

Задание Плоская незатухающая звуковая волна возбуждается источником колебаний частоты источника a. Напишите уравнение колебаний источника x(0,t), если в начальный момент смещение точек источника максимально.
Решение Запишем уравнение бегущей волны, зная, что она плоская:

Используем в записи уравнения w=, запишем (1.1) в начальный момент времени (t=0):

Из условий задачи известно, что в начальный момент смещение точек источника максимально. Следовательно, .

Получим: , отсюда в точке, где расположен источник (т.е. при r=0).

Если в некоторый области пространства распространяются одновременно несколько электромагнитных волн, то в области наложения в каждой точке векторы и волн геометрически складываются. В этом суть принципа суперпозиции в волновых процессах. В случае наложения когерентных волн (волн с одинаковыми частотами или с постоянной разностью фаз колебаний в каждой точке пространстве), наблюдается явление интерференции –устойчиво сохраняется перераспределение энергии волн между точками среды в области наложения с максимумами и минимумами энергии колебаний. Частным случаем интерференции является волновой процесс, называемый стоячей волной, который возникает при наложении встречных плоских волн с одинаковой частотой (как правило, волн - бегущей и отраженной). Стоячая волна образуется в ограниченной области пространства.

Бегущая волна (10)

Отраженная волна (11)

то уравнение ее для вектора имеет вид

где
- амплитуда стоячей волны,
- ее фаза,
- волновой вектор,
- длина бегущей волны.

В точках, где
(n=0,1,2,…) амплитуда в стоячей волне самая большая. Это ее пучности. В точках, где
(n=0,1,2,….), амплитуда стоячей волны превращаются в нуль. Это узлы стоячей волны. Расстояние между соседними пучностями, как и между соседними узлами, равно .

Из уравнения (12) следует, что фаза колебаний
от Х не зависит, соседние точки должны одновременно достигать максимального и минимального отклонений. Однако при переходе через узел фаза изменяется на противоположную, т.к. множитель 2Е 0 coskx при переходе через нуль меняет свой знак.

Поляризованные волны

Волну, изображенную на рис.1, называют линейно или плоскополяризованной, т.к. направление (плоскость) колебания векторов и относительно вектора скорости в процессе распространения волны остается неизменными. Есть и другие, более сложные формы поляризации электромагнитной волны- эллиптическая (или круговая). В этом случае в процессе распространения в пространстве вектор и изменяет свое направление колебания относительно , но таким образом, что его конец описывает в пространстве эллипс (или окружность). В поляризованной волне всегда имеется какая-то определенная ориентация относительно направления распространения волны (осевая симметрия).

Однако, в реальных условиях могут быть реализованы и такие волны, где указанное выше положение нарушается- вектор в волне может иметь любые направления колебаний, причем, в одних направлениях он может иметь большую амплитуду, в других- меньшую. То есть могут быть неполяризованные волны. Такие волны могут возникнуть вследствие отсутствия осевой симметрии в излучателе, при преломлении и отражении волн на границах двух сред, при распространении волн в анизотропной среде.

Наличие или отсутствие поляризации можно проверить специальными устройствами- анализаторами. Для волн радиодиапазона (сантиметровых и миллиметровых радиоволн), например, в качестве анализатора может быть использована решетка с параллельными металлическими прутиками- поляризационнрешетка. Для электромагнитных волн оптического диапазона роль анализатора (поляризатора) выполняют естественные анизотропные кристаллы или пластинки, вырезанные из прозрачных для света анизотропных кристаллов.

Рассмотрим, что происходит при прохождении электромагнитных волн через поляризационную решетку (рис.3). Предположим, что волна сантиметрового диапазона, распространяющаяся вдоль оси Z, имеет Х и Y компоненты вектора . Какое действие оказывают на них проволочки при прохождении волны через решетку? Начнем сY-компоненты. Электрическое поле волны вызовет перемещение электронов в металле вдоль проволочек. За время, меньшее периода волны, электроны достигнут установившейся скорости. Поле волны совершит работу над электронами, передаст им часть своей энергии. В свою очередь электроны частично эту энергию передают при столкновениях с кристаллической решеткой проводника, которая перейдет в тепло. Это во-первых. Во-вторых, т.к. электроны, испытывая действие переменного электрического поля, совершают колебательные движения вдоль проволочек, то они являются элементарными излучателями вторичных электромагнитных волн. Большая часть энергии электронов излучается. Расчет показывает, что при сложении вторичной волны с падающей в положительном направлении оси Z. Эти волны взаимно погашают друг друга, т.е. волна электронов уничтожает падающую волну. В противоположном направлении (-Z), излучение, вызванное движением электронов вдоль оси Y, дает отраженную волну. Т.о., ограда из проволочек исключает - компоненту в прошедшей волне. А что происходит с Х- компонентой вектора? Электроны металла не могут свободно перемещаться вдоль этого направления из-за ограниченности размеров проволоки. Поэтому они не достигают определенной конечной скорости, как это было в случае движения вдольY, а образуют, поверхностный заряд вдоль поверхностей проволок, обращенных к осям + Х и – Х. Когда величина поля этого поверхностного заряда станет достаточной для компенсации внешнего поля внутри проводника, электроны проволок перестанут двигаться. Такое состояние достигается за время, меньшее периода колебаний падающей волны. То есть, в этом случае электроны находятся в статическом равновесии. Они не испускают и не поглощают энергию. Поэтому при прохождении через проволочную ограду Х- компонента изменяться не будет. Таким образом, поляризационная решетка обладает селективной (избирательной) пропускной способностью для волн с различным направлением колебаний вектора.