Экономика        25.01.2022   

Как найти площадь если дана первообразная. Урок «Первообразные и определённый интеграл на ЕГЭ

Муниципальное автономное общеобразовательное учреждение

«Средняя общеобразовательная школа №56 с углубленным изучением математики» города Магнитогорска

Методическая разработка урока

по математике

Первообразные и определённый интеграл на ЕГЭ. Обзор заданий ЕГЭ на тему «Первообразная»)

для учащихся 11 класса

(обобщающий урок)

Филимонова Татьяна Михайловна

Магнитогорск 2018

Аннотация

Занятие предназначено для обучающихся 11класса. Тема урока «Первообразная и определенный интеграл на ЕГЭ. Обзор заданий ЕГЭ на тему «Первообразная». Этап обучения по данной теме - завершающий. Мотивация изучения данной темы обеспечивается за счет, применения ИКТ, использования различных видов заданий, привлечения заданий ФИПИ и заданий сайта Решу ЕГЭ. Приоритетная цель на уроке применение полученных знаний, отработка умений, решение задач с ЕГЭ.

Пояснительная записка

Методическая разработка представляет собой разработку конкретного урока по математике с использованием средств ИКТ. Актуальность разработки заключается в том, что учащиеся решают задачу нахождения площади фигуры разными методами Различные способы решения одной задачи, наглядность, исторические сведения и наличие межпредметных связей способствуют развитию познавательного интереса к математике, осознание значения математики в повседневной жизни человека.

В процессе выполнения теста обучающиеся повторяют теоретические сведения о первообразной и интеграле, что поможет им систематизировать теорию по данной теме, подготовиться к предстоящему экзамену.

Конспект урока

Тип урока: обобщающий урок.

Цели:

Образовательные:

Формирование учебно-познавательной и информационной компетенций, посредством обобщения, систематизации знаний по теме « Первообразная. Интеграл».

Развивающие :

Формирование информационной, общекультурной компетенций через развитие познавательной активности, интереса к предмету, творческих способностей учащихся, расширение кругозора, развитие математической речи.

Воспитательные :

Формирование коммуникативной компетенции и компетенции личностного самосовершенствования, посредством работы над коммуникативными навыками, умением работать в сотрудничестве, над воспитанием таких личностных качеств, как организованность, дисциплинированность.

Оборудование: ПК, проектор, экран.

Ход урока

I. Организационный момент:

Здравствуйте, ребята! Я рада приветствовать вас на уроке. Ц ель нашего урока - обобщить, систематизировать знания по теме «Первообразная. Интеграл», подготовиться к предстоящему ЕГЭ.

II . Проверка домашнего задания:

Найти площадь фигуры, ограниченной линиями y = x 2 , у=. Решение приготовлено на слайде.

На доске заранее приготовлено задание по выведению формулы объема шара.

2 человека по очереди выходят к доске кратко объясняют решение, которое

Остальные в это время проверяют.

I II . Разминка.

Каждому ученику раздается тест.

Заполненные тесты собрать.

Разбор заданий проводится фронтально по выведенным заданиям на экране.

I V . Математическая эстафета.

Теперь в путь! Подъем к «Пику знаний» будет нелегким, могут быть и завалы, и обвалы, и заносы. Но есть и привалы, где вас ждут не только задания. Чтобы продвинуться вперед, надо показать знания.

Учащиеся на каждую парту получают листы с заданиями по теме «Первообразная».

1. Значение первообразной F ( x ) функции f ( x )=11 x +5 в точке 0 равно 6. Найдите F (-3).

2. Значение первообразной F ( x ) функции f ( x )=8 cos x в точке -π равно 13. Найдите F ( π /6).

3. Значение первообразной функции F ( x ) функции f ( x )=6 в точке 0 равно -18. Найдите F(ln3) .

4. На рисунке изображен график первообразной y = F ( x ) функции f ( x ) и восемь точек на оси абсцисс: , , …, . В скольких из этих точек функция f ( x ) положительна?

5. На рисунке изображен график первообразной у= F ( x ) функции f ( x ) и восемь точек на оси абсцисс: , , , …,. В скольких из этих точек функция f(x) отрицательна?

V . Привал.

«Счастливая случайность выпадает лишь на долю подготовленных умов» (Луи Пастер).

Зачитываются сведения из истории интегрального исчисления. Демонстрируются газеты, приготовленные учащимися по истории интегрального исчисления. Газеты посвящены Ньютону и Лейбницу.

VI. Самое трудное восхождение.

Следующее задание предполагается выполнять в письменной форме, поэтому учащиеся работают в тетрадях.

Задача. Сколькими способами можно найти площадь фигуры, ограниченной линиями (слайд)

У кого есть предложения? (фигура состоит из двух криволинейных трапеций и прямоугольника) (выбирайте способ решения, слайд)

После обсуждения данной проблемы на слайде появляется запись

1 способ: S=S 1 +S 2 +S

2 способ: S=S 1 +S ABCD -S OCD

Двое учащихся решают у доски с последующим объяснением решения, остальные учащиеся работают в тетрадях, выбрав один из способов решения.

Вывод (делают учащиеся): мы нашли два способа решения данной задачи, получив один и тот же результат. Обсудить какой способ проще.

Все очень устали, но чем ближе к цели, тем задания становятся все легче и легче.

VШ. Итог урока (слайды)

«Мышление начинается с удивления», - заметил 2 500 лет назад Аристотель. Наш соотечественник Сухомлинский считал, что «чувство удивления - могучий источник желания знать; от удивления к знаниям - один шаг». А математика замечательный предмет для удивления.

Интегралы используются при:

решении задач из области физики;

решении экономических задач (на оптимизацию работы фирмы в условиях конкуренции, расчет о доходности потребительского кредита);

решении социально - демографических задач (математическая модель народонаселения Земли и др.).

IX . Домашнее задание. (слайд)

Задание составленное учителем на сайте «Решу ЕГЭ».

X . Выставление отметок.

Список литературы

Виленкин Н.Я. и др. Алгебра и начала математического анализа. 11 класс. В. Ч.2. (профильный уровень). - М.: Мнемозина, 2009. - 264 с.

Александрова Л.А. Алгебра и начала математического анализа. 11 класс. Самостоятельные работы. - М.: Мнемозина, 2009. - 100 с.

3. Шипова Т.А. Алгебра и начала анализа: Производная. Определенный интеграл. Тесты. - М.: Школа-Пресс, 1996. - 64 с.

4. Сайт metaschool.ru разработки уроков.

5. Сайт Решу ЕГЭ, каталог заданий, первообразная.

Одна из операций дифференцирования- нахождение производной (дифференциала) и применении к исследованию функций.

Не менее важной является обратная задача. Если известно поведение функции в окрестностях каждой точки ее определения, то как восстановить функцию в целом, т.е. во всей области ее определения. Эта задача составляет предмет изучения так называемого интегрального исчисления.

Интегрированием называется действие обратное дифференцированию. Или восстановление функции f(х) по данной производной f`(х). Латинское слово “integro” означает – восстановление.

Пример №1 .

Пусть (f(х))’ = 3х 2 . Найдем f(х).

Решение:

Опираясь на правило дифференцирования, нетрудно догадаться, что f(х)=х 3 , ибо

(х 3)’ = 3х 2 Однако, легко можно заметить, что f(х) находится неоднозначно. В качестве f(х) можно взять f(х)= х 3 +1 f(х)= х 3 +2 f(х)= х 3 -3 и др.

Т.к. производная каждой из них равно 3х 2 . (Производная постоянной равна 0). Все эти функции отличаются друг от друга постоянным слагаемым. Поэтому общее решение задачи можно записать в виде f(х)= х 3 +С, где С - любое постоянное действительное число.

Любую из найденных функций f(х) называют первообразной для функции F`(х)= 3х 2

Определение.

Функция F(х) называется первообразной для функции f(х) на заданном промежутке J, если для всех х из этого промежутка F`(х)= f(х). Так функция F(х)=х 3 первообразная для f(х)=3х 2 на (- ∞ ; ∞). Так как, для всех х ~R справедливо равенство: F`(х)=(х 3)`=3х 2

Как мы уже заметили, данная функция имеет бесконечное множество первообразных.

Пример №2.

Функция есть первообразная для всех на промежутке (0; +∞), т.к. для всех ч из этого промежутка, выполняется равенство.

Задача интегрирования состоит в том, чтобы для заданной функции найти все ее первообразные. При решении этой задачи важную роль играет следующее утверждение:

Признак постоянства функции. Если F"(х) = 0 на некотором промежутке I, то функция F - постоянная на этом промежутке.

Доказательство.

Зафиксируем некоторое x 0 из промежутка I. Тогда для любого числа х из такого промежутка в силу формулы Лагранжа можно указать такое число c, заключенное между х и x 0 , что

F(x) - F(x 0) = F"(c)(x-x 0).

По условию F’ (с) = 0, так как с ∈1, следовательно,

F(x) - F(x 0) = 0.

Итак, для всех х из промежутка I

т е. функция F сохраняет постоянное значение.

Все первообразные функции f можно записать с помощью одной формулы, которую называютобщим видом первообразных для функции f. Справедлива следующая теорема (основное свойство первообразных ):

Теорема. Любая первообразная для функции f на промежутке I может быть записана в виде

F(x) + C, (1) где F (х) - одна из первообразных для функции f (x) на промежутке I, а С - произвольная постоянная.

Поясним это утверждение, в котором кратко сформулированы два свойства первообразной:

  1. какое бы число ни поставить в выражение (1) вместо С, получим первообразную для f на промежутке I;
  2. какую бы первообразную Ф для f на промежутке I ни взять, можно подобрать такое число С, что для всех х из промежутка I будет выполнено равенство

Доказательство.

  1. По условию функция F - первообразная для f на промежутке I. Следовательно, F"(х)= f (х) для любого х∈1, поэтому (F(x) + C)" = F"(x) + C"=f(x)+0=f(x), т. е. F(x) + C - первообразная для функции f.
  2. Пусть Ф (х) - одна из первообразных для функции f на том же промежутке I, т. е. Ф"(x) = f (х) для всех x∈I.

Тогда (Ф(x) - F (x))" = Ф"(х)-F’ (х) = f(x)-f(x)=0.

Отсюда следует в. силу признака постоянства функции, что разность Ф(х) - F(х) есть функция, принимающая некоторое постоянное значение С на промежутке I.

Таким образом, для всех х из промежутка I справедливо равенство Ф(х) - F(x)=С, что и требовалось доказать. Основному свойству первообразной можно придать геометрический смысл: графики любых двух первообразных для функции f получаются друг из друга параллельным переносом вдоль оси Оу

Вопросы к конспектам

Функция F(x) является первообразной для функции f(x). Найдите F(1), если f(x)=9x2 - 6x + 1 и F(-1) = 2.

Найдите все первообразные для функции

Для функции (x) = cos2 * sin2x, найдите первообразную F(x), если F(0) = 0.

Для функции найдите первообразную, график которой проходит через точку

Прямая y=3x+2 является касательной к графику функции y=-12x^2+bx-10. Найдите b , учитывая, что абсцисса точки касания меньше нуля.

Показать решение

Решение

Пусть x_0 — абсцисса точки на графике функции y=-12x^2+bx-10, через которую проходит касательная к этому графику.

Значение производной в точке x_0 равно угловому коэффициенту касательной, то есть y"(x_0)=-24x_0+b=3. С другой стороны, точка касания принадлежит одновременно и графику функции и касательной, то есть -12x_0^2+bx_0-10=3x_0+2. Получаем систему уравнений \begin{cases} -24x_0+b=3,\\-12x_0^2+bx_0-10=3x_0+2. \end{cases}

Решая эту систему, получим x_0^2=1, значит либо x_0=-1, либо x_0=1. Согласно условию абсцисса точки касания меньше нуля, поэтому x_0=-1, тогда b=3+24x_0=-21.

Ответ

Условие

На рисунке изображён график функции y=f(x) (являющийся ломаной линией, составленной из трёх прямолинейных отрезков). Пользуясь рисунком, вычислите F(9)-F(5), где F(x) — одна из первообразных функции f(x).

Показать решение

Решение

По формуле Ньютона-Лейбница разность F(9)-F(5), где F(x) — одна из первообразных функции f(x), равна площади криволинейной трапеции, ограниченной графиком функции y=f(x), прямыми y=0, x=9 и x=5. По графику определяем, что указанная криволинейная трапеция является трапецией с основаниями, равными 4 и 3 и высотой 3 .

Её площадь равна \frac{4+3}{2}\cdot 3=10,5.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

На рисунке изображён график y=f"(x) — производной функции f(x), определённой на интервале (-4; 10). Найдите промежутки убывания функции f(x). В ответе укажите длину наибольшего из них.

Показать решение

Решение

Как известно, функция f(x) убывает на тех промежутках, в каждой точке которых производная f"(x) меньше нуля. Учитывая, что надо находить длину наибольшего из них естественно по рисунку выделяются три таких промежутка: (-4; -2); (0; 3); (5; 9).

Длина наибольшего из них — (5; 9) равна 4.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

На рисунке изображён график y=f"(x) — производной функции f(x), определённой на интервале (-8; 7). Найдите количество точек максимума функции f(x), принадлежащих промежутку [-6; -2].

Показать решение

Решение

Из графика видно, что производная f"(x) функции f(x) меняет знак с плюса на минус (именно в таких точках будет максимум) ровно в одной точке (между -5 и -4 ) из промежутка [-6; -2]. Поэтому на промежутке [-6; -2] ровно одна точка максимума.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

На рисунке изображён график функции y=f(x), определённой на интервале (-2; 8). Определите количество точек, в которых производная функции f(x) равна 0 .

Показать решение

Решение

Равенство нулю производной в точке означает, что касательная к графику функции, проведённая в этой точке, параллельна оси Ox. Поэтому находим такие точки, в которых касательная к графику функции параллельна оси Ox. На данном графике такими точками являются точки экстремума (точки максимума или минимума). Как видим, точек экстремума 5 .

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

Прямая y=-3x+4 параллельна касательной к графику функции y=-x^2+5x-7. Найдите абсциссу точки касания.

Показать решение

Решение

Угловой коэффициент прямой к графику функции y=-x^2+5x-7 в произвольной точке x_0 равен y"(x_0). Но y"=-2x+5, значит, y"(x_0)=-2x_0+5. Угловой коэффициент прямой y=-3x+4, указанной в условии, равен -3. Параллельные прямые имеют одинаковые угловые коэффициенты. Поэтому находим такое значение x_0, что =-2x_0 +5=-3.

Получаем: x_0 = 4.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

На рисунке изображён график функции y=f(x) и отмечены точки -6, -1, 1, 4 на оси абсцисс. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.

Первообразной функции f(x) на промежутке (a; b) называется такая функция F(x) , что выполняется равенство для любогох из заданного промежутка.

Если принять во внимание тот факт, что производная от константы С равна нулю, то справедливо равенство. Таким образом, функция f(x) имеет множество первообразных F(x)+C , для произвольной константы С , причем эти первообразные отличаются друг от друга на произвольную постоянную величину.

Определение неопределенного интеграла.

Все множество первообразных функции f(x) называется неопределенным интегралом этой функции и обозначается .

Выражение называютподынтегральным выражением , а f(x) подынтегральной функцией . Подынтегральное выражение представляет собой дифференциал функции f(x) .

Действие нахождения неизвестной функции по заданному ее дифференциалу называется неопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x) , а множество ее первообразных F(x)+C .

Геометрический смысл неопределенного интеграла. График первообразной Д(х) называют интегральной кривой. В системе координат х0у графики всех первообразных от данной функции представляют семейство кривых, зависящих от величины постоянной С и получаемых одна из другой путем параллельного сдвига вдоль оси 0у. Для примера, рассмотренного выше, имеем:

J 2 х^х = х2 + C.

Семейство первообразных (х + С) геометрически интерпретируется совокупностью парабол.

Если из семейства первообразных нужно найти одну, то задают дополнительные условия, позволяющие определить постоянную С. Обычно с этой целью задают начальные условия: при значении аргумента х = х0 функция имеет значение Д(х0) = у0.

Пример. Требуется найти ту из первообразных функции у = 2 х, которая принимает значение 3 при х0 = 1.

Искомая первообразная: Д(х) = х2 + 2.

Решение. ^2х^х = х2 + C; 12 + С = 3; С = 2.

2. Основные свойства неопределенного интеграла

1. Производная неопределенного интеграла равна подинтегральной функции:

2. Дифференциал неопределенного интеграла равен подинтегральному выражению:

3. Неопределенный интеграл от дифференциала некоторой функции равен сумме самой этой функции и произвольной постоянной:

4. Постоянный множитель можно выносить за знак интеграла:

5. Интеграл суммы (разности) равен сумме (разности) интегралов:

6. Свойство является комбинацией свойств 4 и 5:

7. Свойство инвариантности неопределенного интеграла:

Если , то

8. Свойство:

Если , то

Фактически данное свойство представляет собой частный случай интегрирования при помощи метода замены переменной, который более подробно рассмотрен в следующем разделе.

Рассмотрим пример:

3. Метод интегрирования, при котором данный интеграл путем тождественных преобразований подынтегральной функции (или выражения) и применения свойств неопределенного интеграла приводится к одному или нескольким табличным интегралам, называется непосредственным интегрированием . При сведении данного интеграла к табличному часто используются следующие преобразования дифференциала (операция «подведения под знак дифференциала »):

Вообще, f’(u)du = d(f(u)). эта (формула очень часто используется при вычислении интегралов.

Найти интеграл

Решение. Воспользуемся свойствами интегралаи приведем данный интеграл к нескольким табличным.

4. Интегрирование методом подстановки.

Суть метода заключается в том, что мы вводим новую переменную, выражаем подынтегральную функцию через эту переменную, в результате приходим к табличному (или более простому) виду интеграла.

Очень часто метод подстановки выручает при интегрировании тригонометрических функций и функций с радикалами.

Пример.

Найти неопределенный интеграл .

Решение.

Введем новую переменную . Выразимх через z :

Выполняем подстановку полученных выражений в исходный интеграл:

Из таблицы первообразных имеем .

Осталось вернуться к исходной переменной х :

Ответ:

51. На рисунке изображён график y=f "(x) - производной функции f(x), определённой на интервале (− 4; 6). Найдите абсциссу точки, в которой касательная к графику функции y=f(x ) параллельна прямой y=3x или совпадает с ней.

Ответ: 5

52. На рисунке изображён график y=F(x) f(x) f(x) положительна?

Ответ: 7

53. На рисунке изображён график y=F(x) одной из первообразных некоторой функции f(x ) и отмечены восемь точек на оси абсцисс: x1, x2, x3, x4, x5, x6, x7, x8. В скольких из этих точек функция f(x) отрицательна?

Ответ: 3

54. На рисунке изображён график y=F(x) одной из первообразных некоторой функции f(x) и отмечены десять точек на оси абсцисс: x1, x2, x3, x4, x5, x6, x7, x8, x9, x10 . В скольких из этих точек функция f(x) положительна?

Ответ: 6

55. На рисунке изображён график y=F(x f(x), определённой на интервале (− 7; 5). Пользуясь рисунком, определите количество решений уравнения f(x)=0 на отрезке [− 5; 2].

Ответ: 3

56. На рисунке изображён график y=F(x) одной из первообразных некоторой функции f(x), определённой на интервале (− 8; 7). Пользуясь рисунком, определите количество решений уравнения f(x)= 0 на отрезке [− 5; 5].

Ответ: 4

57. На рисунке изображён график y=F (x ) одной из первообразных некоторой функции f (x ), определённой на интервале (1;13). Пользуясь рисунком, определите количество решений уравнения f (x )=0 на отрезке .

Ответ: 4

58. На рисунке изображён график некоторой функции y=f(x) (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(−1)−F(−8), где F(x) f(x).


Ответ: 20

59. На рисунке изображён график некоторой функции y=f(x ) (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(−1)−F(−9), где F(x) - одна из первообразных функции f(x).


Ответ: 24

60. На рисунке изображён график некоторой функции y=f(x ). Функция

-одна из первообразных функции f(x). Найдите площадь закрашенной фигуры .

Ответ: 6

61. На рисунке изображён график некоторой функции y=f(x). Функция

Одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.

Ответ: 14,5

параллельна касательной к графику функции

Ответ:0,5

Найдите абсциссу точки касания.

Ответ: -1

является касательной к графику функции

Найдите c .

Ответ: 20

является касательной к графику функции

Найдите a .

Ответ:0,125

является касательной к графику функции

Найдите b , учитывая, что абсцисса точки касания больше 0.

Ответ: -33

67. Материальная точка движется прямолинейно по закону

где x t - время в секундах, измеренное с момента начала движения. В какой момент времени (в секундах) её скорость была равна 96 м/с?

Ответ: 18

68. Материальная точка движется прямолинейно по закону

где x - расстояние от точки отсчёта в метрах, t - время в секундах, измеренное с момента начала движения. В какой момент времени (в секундах) её скорость была равна 48 м/с?

Ответ: 9

69. Материальная точка движется прямолинейно по закону

где x t t =6 с.

Ответ: 20

70. Материальная точка движется прямолинейно по закону

где x - расстояние от точки отсчета в метрах, t - время в секундах, измеренное с начала движения. Найдите ее скорость (в м/с) в момент времени t =3 с.

Ответ: 59