Задачи        05.01.2024   

С помощью производной провести исследование функции. Практическое занятие "Исследование функции с помощью производной" (для студентов СПО)

Цель урока: Научить проводить исследование функций; строить их графики.

Форма: урок-беседа.

Методы: диалог, наглядные пособия и слайды.

Оборудование: ИКТ, таблицы.

Ход урока

I. Проверка домашнего задания.

Учитель: - Ребята! У вас было домашнее задание "Критические точки функции, максимумы и минимумы". Дайте определение критической точки функции.

Ученик: - Критической точкой называется внутренняя точка области определения, в которой производная либо равна нулю, либо не существует.

Учитель: - Как найти критические точки?

Ученик: - 1

) Найти производную функции;

2) Решить уравнение: f "(x)=0. Корни этого уравнения являются критическими точками.

Учитель: - Найдите критические точки функций:

а) f(x)= 4 - 2x + 7x 2

б) f(x)= 4x - x 3 /3

а) 1) Найдем производную данной функции:

f "(x)= (4 - 2x + 7x 2)" = -2+14x

2) Решим уравнение f "(x)=0 <=> -2+14x =0 <=> x=1/7

3) Так как уравнение f "(x)=0 имеет один корень, то данная функция имеет одну критическую точку х = 1/7.

б) 1) Найдем производную данной функции: f "(x)= 4 - x 2

2) Решим уравнение: f "(x)=0 <=> 4 - x 2 = 0 <=> х = 2 или х = -2

3) Так как уравнение f "(x)=0 имеет два корня, то данная функция имеет две критические точки х 1 = 2 и х 2 = -2 .

II. Устная работа.

Учитель: - Ребята! Повторим основные вопросы, которые нужны для изучения новой темы. Для этого рассмотрим таблицы с рисунками (приложение 1 ).

Укажите точки, в которых возрастание функции сменяется убыванием. Как называются эти точки?

Ученик: - На рисунке а) - точка К-это точка максимума, на рисунке б) - точка М - это точка максимума.

Учитель: - Назовите точки минимума функции.

Ученик: - Точка К на рисунке в) и г) - точка минимума функции.

Учитель: - Какие точки могут быть точками экстремума функции?

Ученик: - Критические точки могут быть точками экстремума функции.

Учитель: - Какие необходимые условия вы знаете?

Ученик: - Существует теорема Ферма. Необходимое условие экстремума: Если точка х 0 является точкой экстремума функции f и в этой точке существует производная f ", то она равна нулю: f "(x)=0.

Учитель: - Найдите критические точки для функции:

а) f(x) = | х |

б) f(x) = 2х + | х |

Ученик: - Рассмотрим функцию f(x) = | х | (приложение 2 ). Эта функция не имеет производной в 0. Значит, 0- критическая точка. Очевидно, что в точке 0 функция имеет минимум.

Ученик: - Рассмотрим функцию f(x) = 2х + | х | (приложение 3 ). По графику видно, что в точке 0 эта функция не имеет экстремума. В этой точке функция не имеет и производной.

В самом деле, если предположить, что функция f имеет в точке 0 производную, то f(х) - 2х также имеет производную в 0. Но f(х) - 2х = | х |, а функция | х | в точке 0 не дифференцируема, т.е. мы пришли к противоречию.

Значит, функция f в точке 0 производной не имеет.

Учитель: - Из теоремы Ферма следует, что при нахождении точек экстремума нужно найти критические точки. Но из рассмотренных примеров видно, что для того чтобы данная критическая точка была точкой экстремума нужно еще какое-то дополнительное условие.

Какие достаточные условия существования экстремума в точке вы знаете?

Ученик: - Признак максимума функции : Если функция f непрерывна в точке х 0 , а f "(x)>0 на интервале (а;х 0) и f "(x) <0 на интервале (х 0 ; в), то точка х 0 является точкой максимума функции f.

То есть если в точке х 0 производная меняет знак с плюса на минус, то х 0 есть точка максимума.

Ученик: - Признак минимума : Если функция f непрерывна в точке х 0 , а f "(x) <0 на интервале (а;х 0) и f "(x) >0 на интервале (х 0 ; в), то точка х 0 является точкой минимума функции f.

То есть если в точке х 0 производная меняет знак с минуса на плюс, то х 0 есть точка минимума.

Учитель: - А какой алгоритм нахождения точек экстремума функции вы знаете.

Ученик объясняет алгоритм исследования функции f на экстремум с помощью производной (приложение 4 ) и находит точки экстремума функции:

f (х)= x 4 -2х 2

D (f) =IR и f непрерывна на всей числовой прямой, как целая рациональная функция.

2. f "(x) = 4x 3 -4х = 4х (х+1)(х-1).

3. f "(x)=0 <=> х= -1 V х=0 V х=1.

Рис.1 (знаки f ")

Так как f непрерывна в критических точках, то из рисунка 1 (приложение 5 ) видно, что -1 и 1 - точки минимума, а 0 - точка максимума функции f.

f min = f (-1) = f (1) = -1, f max = f (0) =0.

Учитель: - Ребята! Давайте вспомним алгоритм отыскания промежутков монотонности функции f.

Ученик вспоминает алгоритм отыскания промежутков монотонности функции f (приложение 6 ).

Учитель: - Найти промежутки возрастания и убывания функции f, заданной формулой

f (x)= x 3 -12х

Решение:

1. Так как f(x) - многочлен, то D (f) =IR.

2. Функция f дифференцируема на всей числовой прямой и f "(x)= 3x 2 -12 = 3 (х+2) (х-2).

3. Критическими точками функции f могут быть только нули f "(x).

f "(x) =0 <=> x = -2 V х=2.

D (f)\ {-2; 2}= (-; -2) U (-2 ; 2) U (2; +).

Рис.2 (знаки f ").

Найти области определения и значений данной функции f.

Выяснить, обладает ли функция особенностями, облегчающими исследование, то есть является ли функция f:

а) четной или нечетной;

б) периодической.

3. Вычислить координаты точек пересечения графика с осями координат.

4. Найти промежутки знакопостоянства функции f.

5. Выяснить, на каких промежутках функция f возрастает, а на каких убывает.

6. Найти точки экстремума (максимум или минимум) и вычислить значения f в этих точках.

7. Исследовать поведение функции f в окрестности характерных точек не входящих в область определения.

8. Построить график функции.

Эта схема имеет примерный характер.

Учитывая все сказанное, исследуем функцию: f(x)= 3x 5 -5х 3 +2 и построим ее график.

Проведем исследование по указанной схеме:

D (f ") =IR, так как f (x) - многочлен.

Функция f не является ни четной, ни нечетной, так как

f (-x)= 3(-x) 5 -5(-x) 3 +2 = -3x 5 +5х 3 +2= -(3x 5 -5х 3 -2) f(x)

Найдем координаты точек пересечения графика с осями координат:

а) с осью 0Х, для этого решим уравнение: 3x 5 -5х 3 +2 = 0.

Методом подбора можно найти один из корней (x = 1). Другие корни могут быть найдены только приближенно. Поэтому для данной функции остальные точки пересечения графика с осью абсцисс и промежутки знакопостоянства находить не будем.

б) с осью 0У: f(0)=2

Точка А (0; 2) - точка пересечения графика функции с осью 0У.

Отметили, что промежутки знакопостоянства не будем находить.

Найдем промежутки возрастания и убывания функции

а) f "(x)= 15x 4 -15х 2 = 15х 2 (х 2 -1)

D (f ") =IR, поэтому критических точек которых f "(x)не существует, нет.

б) f "(x) = 0, если х 2 (х 2 -1)=0 <=> x = -1 V x = 0 V x = 1.

в) Получим три критические точки, они разбивают координатную прямую на четыре промежутка. Определим знак производной на этих промежутках:

Рис.3 (знаки f ")

IV. Закрепление новой темы. Решение задач .

Учитель: - Исследуйте функцию и постройте ее график: f (x)= x 4 -2х 2 -3.

Ученик: - 1) D (f) =R.

2) f(-x)= (-x) 4 -2(-x) 2 -3 = x 4 -2х 2 -3; f(-x)= f(x),

значит, функция f является четной. Исследование ее можно проводить на промежутке функция возрастает от - до -4, поэтому на этом промежутке уравнение f (x)=0 корней не имеет.

б) На промежутке [-1; 2] уравнение так же не имеет корней, так как на этом промежутке функция убывает от -4 до -31.

в) На промежутке и убывает на [-∞;-1].

Точки экстремума: x min = -1

Экстремумы функции: y min =y(-1)=1-2= -1


Глава III. Исследование функций.

3.1. Общая схема исследования функций.

Исследуя функцию, нужно знать общую схему исследования:

1) D(y) – область определения (область изменения переменной х)

2) E(y) – область значения х (область изменения переменной у)

3) Вид функции: четная, нечетная, периодическая или функция общего вида.

4) Точки пересечения графика функции с осями Охи Оу (по возможности).

5) Промежутки знакопостоянства:

а) функция принимает положительное значение: f(x)>0

б) отрицательное значение: f(x)<0.

6) Промежутки монотонности функции:

а) возрастания;

б) убывания;

в) постоянства (f=const).

7) Точки экстремума (точки минимума и максимума)

8) Экстремумы функции (значение функции в точках минимума и максимума)

9) Дополнительные точки.

Они могут быть взяты для того, чтобы более точно построить график функции.

Следует заметить, что экстремумы функции f не всегда совпадают с наибольшим и наименьшим значением функции.

3.2. Признак возрастания и убывания функций.

Если строить график функции по каким-либо произвольно выбранным его точкам, соединяя их плавной линией, то даже при очень большом числе случайно выбранных точек может оказаться, что построенный таким образом график будет сильно отличаться от графика заданной функции.

Если при исследовании функции использовать производную и найти так называемые «опорные» точки, т.е. точки разрыва, точки максимума и минимума, промежутки монотонности функции, то даже при небольшом числе таких «опорных» точек мы получим правильное представление о графике функции.

Прежде чем обратиться к примерам, приведу необходимые определения и теоремы.

Определение монотонности функции на интервале Функция y=f(x) называется возрастающей на интервале, если для любых точек х 1 и х 2 этого интервала из условия х 1 <х 2 следует, что f(x 1)f(x 2), то функция называется убывающей на этом интервале.

Достаточный признак монотонности функции в интервале. Теорема: если функция имеет положительную (отрицательную) производную в каждой точке интервала, то функция возрастает (убывает) на этом интервале.

Эта теорема в школьных учебниках принимается без доказательства.

Геометрическое истолкование теоремы весьма простое, если вспомнить, что f ’(x)=tgα, α – это угловой коэффициент касательной к графику функции в заданной точке х. Если, например, f ‘ (x)>0 во всех точках некоторого интервала, то касательная к графику с осью абсцисс образуют острые углы, а значит, с ростом х возрастает и f(x). Если же f ‘ (x)<0, то касательная с осью абсцисс образуют тупой угол, а значит, с ростом х функция f(x) убывает. Поскольку эти рассуждения основаны лишь на наглядных геометрических представлениях, они не являются доказательством теоремы.

3.3. Критические точки функции, максимумы и минимумы.

Определение точек экстремума функции . Пусть х 0 – внутренняя точка из области определения функции f(x). Тогда, если существует такая δ – окрестность ] x 0 - δ, x 0 + δ [ точки х 0 , что для всех х из этой окрестности выполняется неравенство f(x)≤f(x 0) (неравенство f(x)≥f(x 0)), точка х 0 называется точкой максимума (точкой минимума) этой функции.

Точки максимума минимума являются внутренними точками области определения функции.

Необходимый признак существования экстремума дифференци-руемой функции .

Теорема Ферма.

Если х 0 есть точка экстремума функции f(x) и в этой точке производная существует, то она равна нулю: f ’(x 0)=0.

Эта теорема не является достаточным условием существование экстремума дифференцируемой функции: если в некоторой точке х 0 производная обращается в нуль, то из этого еще не следует, что в точке х 0 функция имеет экстремум.

Определение критических точек функции . Внутренние точки области определения функции, в которых ее производная равна нулю или не существует, называют критическими точками функции.

Достаточные условия существования экстремума .

Теорема 1. Если функция f(x) непрерывна в точке х 0 , f ‘(x)>0 на интервале и f ‘(x)<0 на интервале , то х 0 является точкой максимума функции f(x).

Теорема 2. Если функция f(x) непрерывна в точке х 0 , f ‘(x)<0 на интервале и f ‘(x)>0 на интервале , то х 0 является точкой минимума функции f(x).

Для отыскания экстремальных точек функции нужно найти ее критические точки и для каждой из них проверить выполнение достаточных условий экстремума.

3.4. Наибольшие и наименьшие значения функции.

Правила отыскания наибольшего и наименьшего значений функций в промежутке. Для отыскания наибольшего и наименьшего значений функции, дифференцируемой в некотором промежутке, нужно найти все критические точки, лежащие внутри промежутка, вычислить значения функции в этих точках и на концах промежутка и из всех полученных таким образом значений функции выбрать наибольшее и наименьшее.

Глава IV. Примеры применения производной к исследованию функции.

Пример 11. Исследовать функцию y=x 3 +6x 2 +9x и построить график.

2) Определим вид функции:

y(-x)=(-x) 3 +6(-x) 2 +9(-x)=-x+6x 2 -9x функция общего вида.

x=0 или x 2 +6x+9=0

D=0, уравнение имеет один корень.

(0;0) и (-3;0) – точки пересечения с осью х.

y’=(x 3 +6x 2 +9x)’=3x 2 +12x+9

y’=0, т.е. 3x 2 +12x+9=0 сократим на 3

D>0, уравнение имеет 2 корня.

x 1,2 =(-b±√D)/2a, x 1 =(-4+2)/2 , x 2 =(-4-2)/2

0
-4

x=-4, y’=3*16-48+9=9>0

x=-2, y’=12-24+9=-3<0

x=0, y’=0+0+9=9>0

7) Найдем x min и x max:

8) Найдем экстремумы функции:

y min =y(-1)=-1+6-9=-4

y max =y(-3)=-27+54-27=0

9) Построим график функции:

10) Дополнительные точки:

y(-4)=-64+96-36=-4

Пример 12. Исследовать функцию y=x 2 /(x-2) и построить график

y=x 2 /(x-2)=x+2+4/(x-2)

Найдем асимптоты функции:

x≠ 2, x=2 – вертикальная асимптота

y=x+2 – наклонная асимптота, т.к.

Найдем область определения.

2)Определим вид функции.

y(-x)=(-x) 2 /(-x-2)=x 2 /(-x-2), функция общего вида.

3)Найдем точки пересечения с осями.

Oy: x=0, y=0 (0;0) – точка пересечения с осью y.

x=0 или x=2 (2;0) – точка пересечения с осью х

4) Найдем производную функции:

y’=(2x(x-2)-x 2)/(x-2) 2 =(2x 2 -4x-x 2)/(x-2) 2 =(x(x-4))/(x-2) 2 =(x 2 -4x)/(x-2) 2

5) Определим критические точки:

x 2 -4x=0 x(x-4)=0

y’=0, (x 2 -4x)/(x-2) 2 =0 <=> <=>

(x-2) 2 ≠ 0 x≠ 2

x 2 -4x=0, а (x-2) 2 ≠ 0, т.е. х≠ 2

6) Обозначим критические точки на координатной прямой и определим знак функции.

0 8

x=-1, y’=(1+4)/9=5/9>0

x=1, y’=(1-4)/1=-3<0

x=3, y’=(9-12)/1=-3<0

x=5, y’=(25-20)/9=5/9>0

7) Найдем точки минимума и максимума функции:

8) Найдем экстремумы функции:

y min =y(4)=16/2=8

9) Построим график функции:

10) Дополнительные точки:

y(-3)=9/-5=-1,8 y(3)=9/1=9

y(1)=1/-1=-1 y(6)=36/4=9

Пример 13. Исследовать функцию y=(6(x-1))/(x 2 +3) и построить график. 1) Найдем область определения функции:

2) Определим вид функции:

y(-x)=(6(-x-1))/(x 2 +3)=-(6(x+1))/(x 2 -3) – функция общего вида.

3) Найдем точки пересечения с осями:

O y: x=0, y=(6(0-1))/(0+3)=-2, (0;-2) – точка пересечения с осью y.

(6(x-1))/(x 2 +3)=0

O x: y=0, <=>

4) Найдем производную функции:

y’=(6(x-1)/(x 2 +3))’=6(x 2 +3-2x 2 +2x)/(x 2 +2) 2 =-6(x+1)(x-3)/(x 2 +3) 2

5) Определим критические точки:

y’=0, т.е. -6(x+1)(x-3)/(x 2 +3) 2 =0

y’=0, если х 1 =-1 или х 2 =3 , значит х=-1 и х=3, критические точки.

6) Обозначим критические точки на координатной прямой и определим знак функции:

-3 2

x=-2, y’=-6(-2+1)(-2-3)/(4+3) 2 =-30/49<0

x=0, y’=-6(0+1)(0-3)/(0+3) 2 =2>0

x=4, y’=-6(4+1)(4-3)/(16+3) 2 =-30/361<0

7) Найдем точки минимума и максимума:

8) Найдем экстремумы функции:

y min =y(-1)=(6(-1-1))/(1+3)=-12/4=-3

y max =y(3)=(6(3-1))/(9+3)=12/12=1

9) Построим график функции:

10) Дополнительные точки:

y(-3)=(6(-3-1))/(9+3)=-24/12=-2

y(6)=(6(6-1))/(36+3)=30/39=10/13≈ 0,77

Пример 14. Исследовать функцию y=xlnx и построить ее график:

1) Найдем область определения функции:

D(y)=R + (только положительные значения)

2) Определим вид функции:

y(-x)=-xlnx - общего вида.

3) Найдем точки пересечения с осями:

O y , но х≠ 0, значит точек пересечения с осью y нет.

O x: y=0, то есть xlnx=0

x=0 или lnx=0

(1;0) – точка пересечения с осью х

4) Найдем производную функции:

y’=x’ ln x + x(ln x)’=ln x +1

5) Определим критические точки:

y’=0, то есть lnx +1=0

y’=0 , если x=1/e , значит x=1/e– критическая точка.

6) Обозначим критические точки на координатной прямой и определим знак функции:

1/e

x=1/(2e); y’=log(2e) -1 +1=1-ln(2e)=1-ln e=-ln 2<0

x=2e; y’=ln(2e)+1=ln 2+ln e+1=ln 2+2>0

7) 1/e – точка минимума функции.

8) Найдем экстремумы функции:

y min =y(1/e)=1/e ln e -1 =-1/e (≈ -0,4).

9) Построим график функции:

Заключение.

Над этой темой работали многие ученые и философы. Много лет назад произошли эти термины: функция, график, исследование функции и до сих пор они сохранились, приобретая новые черты и признаки.

Я выбрала эту тему, потому что мне было очень интересно пройти этот путь исследования функции. Мне кажется, что многим было бы интересно побольше узнать о функции, о ее свойствах и преобразованиях. Сделав этот реферат, я систематизировала свои навыки пополнила свой запас знаний об этой теме.

Я хочу посоветовать всем глубже изучить эту тему.


Список литературы.

1. Башмаков, М.И. Алгебра и начало анализа.- М.: Просвещение, 1992.

2. Глейзер, Г.И. История математики в школе.- М.: Просвещение, 1983.

3. Гусев, В.А. Математика: Справочные материалы.- М.: Просвещение, 1888.

4. Дорофеев, Г.В. Пособие по математике для поступающих в ВУЗы.- М.: Наука, 1974.

5. Зорин, В.В. Пособие по математике для поступающих в ВУЗы.- М.: Высшая школа, 1980.

6. Колмогоров А.Н. Алгебра и начала анализа.- М.: Просвещение, 1993.

Как исследовать функцию и построить её график?

Похоже, я начинаю понимать одухотворённо-проникновенный лик вождя мирового пролетариата, автора собрания сочинений в 55 томах…. Нескорый путь начался элементарными сведениями о функциях и графиках , и вот сейчас работа над трудоемкой темой заканчивается закономерным результатом – статьёй о полном исследовании функции . Долгожданное задание формулируется следующим образом:

Исследовать функцию методами дифференциального исчисления и на основании результатов исследования построить её график

Или короче: исследовать функцию и построить график.

Зачем исследовать? В простых случаях нас не затруднит разобраться с элементарными функциями, начертить график, полученный с помощью элементарных геометрических преобразований и т.п. Однако свойства и графические изображения более сложных функций далеко не очевидны, именно поэтому и необходимо целое исследование.

Основные этапы решения сведены в справочном материале Схема исследования функции , это ваш путеводитель по разделу. Чайникам требуется пошаговое объяснение темы, некоторые читатели не знают с чего начать и как организовать исследование, а продвинутым студентам, возможно, будут интересны лишь некоторые моменты. Но кем бы вы ни были, уважаемый посетитель, предложенный конспект с указателями на различные уроки в кратчайший срок сориентирует и направит Вас в интересующем направлении. Роботы прослезились =) Руководство свёрстано в виде pdf-файла и заняло заслуженное место на странице Математические формулы и таблицы .

Исследование функции я привык разбивать на 5-6 пунктов:

6) Дополнительные точки и график по результатам исследования.

На счёт заключительного действия, думаю, всем всё понятно – будет очень обидно, если в считанные секунды его перечеркнут и вернут задание на доработку. ПРАВИЛЬНЫЙ И АККУРАТНЫЙ ЧЕРТЁЖ – это основной результат решения! Он с большой вероятностью «прикроет» аналитические оплошности, в то время как некорректный и/или небрежный график доставит проблемы даже при идеально проведённом исследовании.

Следует отметить, что в других источниках количество пунктов исследования, порядок их выполнения и стиль оформления могут существенно отличаться от предложенной мной схемы, но в большинстве случаев её вполне достаточно. Простейшая версия задачи состоит всего из 2-3 этапов и формулируется примерно так: «исследовать функцию с помощью производной и построить график» либо «исследовать функцию с помощью 1-й и 2-й производной, построить график».

Естественно – если в вашей методичке подробно разобран другой алгоритм или ваш преподаватель строго требует придерживаться его лекций, то придётся внести некоторые коррективы в решение. Не сложнее, чем заменить вилку бензопилой ложкой.

Проверим функцию на чётность/нечётность:

После чего следует шаблонная отписка:
, значит, данная функция не является чётной или нечётной.

Так как функция непрерывна на , то вертикальные асимптоты отсутствуют.

Нет и наклонных асимптот.

Примечание : напоминаю, что более высокого порядка роста , чем , поэтому итоговый предел равен именно «плюс бесконечности».

Выясним, как ведёт себя функция на бесконечности:

Иными словами, если идём вправо, то график уходит бесконечно далеко вверх, если влево – бесконечно далеко вниз. Да, здесь тоже два предела под единой записью. Если у вас возникли трудности с расшифровкой знаков , пожалуйста, посетите урок о бесконечно малых функциях .

Таким образом, функция не ограничена сверху и не ограничена снизу . Учитывая, что у нас нет точек разрыва, становится понятна и область значений функции : – тоже любое действительное число.

ПОЛЕЗНЫЙ ТЕХНИЧЕСКИЙ ПРИЁМ

Каждый этап задания приносит новую информацию о графике функции , поэтому в ходе решения удобно использовать своеобразный МАКЕТ. Изобразим на черновике декартову систему координат. Что уже точно известно? Во-первых, у графика нет асимптот, следовательно, прямые чертить не нужно. Во-вторых, мы знаем, как функция ведёт себя на бесконечности. Согласно проведённому анализу, нарисуем первое приближение:

Заметьте, что в силу непрерывности функции на и того факта, что , график должен, по меньшей мере, один раз пересечь ось . А может быть точек пересечения несколько?

3) Нули функции и интервалы знакопостоянства.

Сначала найдём точку пересечения графика с осью ординат. Это просто. Необходимо вычислить значение функции при :

Полтора над уровнем моря.

Чтобы найти точки пересечения с осью (нули функции) требуется решить уравнение , и тут нас поджидает неприятный сюрприз:

В конце притаился свободный член, который существенно затрудняет задачу.

Такое уравнение имеет, как минимум, один действительный корень, и чаще всего этот корень иррационален. В худшей же сказке нас поджидают три поросёнка. Уравнение разрешимо с помощью так называемых формул Кардано , но порча бумаги сопоставима чуть ли не со всем исследованием. В этой связи разумнее устно либо на черновике попытаться подобрать хотя бы один целый корень. Проверим, не являются ли оными числа :
– не подходит;
– есть!

Здесь повезло. В случае неудачи можно протестировать ещё и , а если и эти числа не подошли, то шансов на выгодное решение уравнения, боюсь, очень мало. Тогда пункт исследования лучше полностью пропустить – авось станет что-нибудь понятнее на завершающем шаге, когда будут пробиваться дополнительные точки. И если таки корень (корни) явно «нехорошие», то об интервалах знакопостоянства лучше вообще скромно умолчать да поаккуратнее выполнить чертёж.

Однако у нас есть красивый корень , поэтому делим многочлен на без остатка:

Алгоритм деления многочлена на многочлен детально разобран в первом примере урока Сложные пределы .

В итоге левая часть исходного уравнения раскладывается в произведение:

А теперь немного о здоровом образе жизни. Я, конечно же, понимаю, что квадратные уравнения нужно решать каждый день, но сегодня сделаем исключение: уравнение имеет два действительных корня .

На числовой прямой отложим найденные значения и методом интервалов определим знаки функции:


ог Таким образом, на интервалах график расположен
ниже оси абсцисс , а на интервалах – выше данной оси .

Полученные выводы позволяют детализировать наш макет, и второе приближение графика выглядит следующим образом:

Обратите внимание, что на интервале функция обязательно должна иметь хотя бы один максимум, а на интервале – хотя бы один минимум. Но сколько раз, где и когда будет «петлять» график, мы пока не знаем. К слову, функция может иметь и бесконечно много экстремумов .

4) Возрастание, убывание и экстремумы функции.

Найдём критические точки:

Данное уравнение имеет два действительных корня . Отложим их на числовой прямой и определим знаки производной:


Следовательно, функция возрастает на и убывает на .
В точке функция достигает максимума: .
В точке функция достигает минимума: .

Установленные факты загоняют наш шаблон в довольно жёсткие рамки:

Что и говорить, дифференциальное исчисление – штука мощная. Давайте окончательно разберёмся с формой графика:

5) Выпуклость, вогнутость и точки перегиба.

Найдём критические точки второй производной:

Определим знаки :


График функции является выпуклым на и вогнутым на . Вычислим ординату точки перегиба: .

Практически всё прояснилось.

6) Осталось найти дополнительные точки, которые помогут точнее построить график и выполнить самопроверку. В данном случае их мало, но пренебрегать не будем:

Выполним чертёж:

Зелёным цветом отмечена точка перегиба, крестиками – дополнительные точки. График кубической функции симметричен относительно своей точки перегиба, которая всегда расположена строго посередине между максимумом и минимумом.

По ходу выполнения задания я привёл три гипотетических промежуточных чертежа. На практике же достаточно нарисовать систему координат, отмечать найденные точки и после каждого пункта исследования мысленно прикидывать, как может выглядеть график функции. Студентам с хорошим уровнем подготовки не составит труда провести такой анализ исключительно в уме без привлечения черновика.

Для самостоятельного решения:

Пример 2

Исследовать функцию и построить график.

Тут всё быстрее и веселее, примерный образец чистового оформления в конце урока.

Немало секретов раскрывает исследование дробно-рациональных функций:

Пример 3

Методами дифференциального исчисления исследовать функцию и на основании результатов исследования построить её график.

Решение : первый этап исследования не отличается чем-то примечательным, за исключением дырки в области определения:

1) Функция определена и непрерывна на всей числовой прямой кроме точки , область определения : .


, значит, данная функция не является четной или нечетной.

Очевидно, что функция непериодическая.

График функции представляет собой две непрерывные ветви, расположенные в левой и правой полуплоскости – это, пожалуй, самый важный вывод 1-го пункта.

2) Асимптоты, поведение функции на бесконечности.

а) С помощью односторонних пределов исследуем поведение функции вблизи подозрительной точки, где явно должна быть вертикальная асимптота:

Действительно, функции терпит бесконечный разрыв в точке ,
а прямая (ось ) является вертикальной асимптотой графика .

б) Проверим, существуют ли наклонные асимптоты:

Да, прямая является наклонной асимптотой графика , если .

Пределы анализировать смысла не имеет, поскольку и так понятно, что функция в обнимку со своей наклонной асимптотой не ограничена сверху и не ограничена снизу .

Второй пункт исследования принёс много важной информации о функции. Выполним черновой набросок:

Вывод №1 касается интервалов знакопостоянства. На «минус бесконечности» график функции однозначно расположен ниже оси абсцисс, а на «плюс бесконечности» – выше данной оси. Кроме того, односторонние пределы сообщили нам, что и слева и справа от точки функция тоже больше нуля. Обратите внимание, что в левой полуплоскости график, по меньшей мере, один раз обязан пересечь ось абсцисс. В правой полуплоскости нулей функции может и не быть.

Вывод №2 состоит в том, что функция возрастает на и слева от точки (идёт «снизу вверх»). Справа же от данной точки – функция убывает (идёт «сверху вниз»). У правой ветви графика непременно должен быть хотя бы один минимум. Слева экстремумы не гарантированы.

Вывод №3 даёт достоверную информацию о вогнутости графика в окрестности точки . О выпуклости/вогнутости на бесконечностях мы пока ничего сказать не можем, поскольку линия может прижиматься к своей асимптоте как сверху, так и снизу. Вообще говоря, есть аналитический способ выяснить это прямо сейчас, но форма графика «даром» прояснится на более поздних этапах.

Зачем столько слов? Чтобы контролировать последующие пункты исследования и не допустить ошибок! Дальнейшие выкладки не должны противоречить сделанным выводам.

3) Точки пересечения графика с координатными осями, интервалы знакопостоянства функции.

График функции не пересекает ось .

Методом интервалов определим знаки :

, если ;
, если .

Результаты пункта полностью соответствуют Выводу №1. После каждого этапа смотрите на черновик, мысленно сверяйтесь с исследованием и дорисовывайте график функции.

В рассматриваемом примере числитель почленно делится на знаменатель, что очень выгодно для дифференцирования:

Собственно, это уже проделывалось при нахождении асимптот.

– критическая точка.

Определим знаки :

возрастает на и убывает на

В точке функция достигает минимума: .

Разночтений с Выводом №2 также не обнаружилось, и, вероятнее всего, мы на правильном пути.

Значит, график функции является вогнутым на всей области определения.

Отлично – и чертить ничего не надо.

Точки перегиба отсутствуют.

Вогнутость согласуется с Выводом №3, более того, указывает, что на бесконечности (и там и там) график функции расположен выше своей наклонной асимптоты.

6) Добросовестно приколотим задание дополнительными точками. Вот здесь придётся изрядно потрудиться, поскольку из исследования нам известны только две точки.

И картинка, которую, наверное, многие давно представили:


В ходе выполнения задания нужно тщательно следить за тем, чтобы не возникало противоречий между этапами исследования, но иногда ситуация бывает экстренной или даже отчаянно-тупиковой. Вот «не сходится» аналитика – и всё тут. В этом случае рекомендую аварийный приём: находим как можно больше точек, принадлежащих графику (сколько хватит терпения), и отмечаем их на координатной плоскости. Графический анализ найденных значений в большинстве случаев подскажет, где правда, а где ложь. Кроме того, график можно предварительно построить с помощью какой-нибудь программы, например, в том же Экселе (понятно, для этого нужны навыки).

Пример 4

Методами дифференциального исчисления исследовать функцию и построить её график.

Это пример для самостоятельного решения. В нём самоконтроль усиливается чётностью функции – график симметричен относительно оси , и если в вашем исследовании что-то противоречит данному факту, ищите ошибку.

Чётную или нечётную функцию можно исследовать только при , а потом пользоваться симметрией графика. Такое решение оптимально, однако выглядит, по моему мнению, весьма непривычно. Лично я рассматриваю всю числовую ось, но дополнительные точки нахожу всё же лишь справа:

Пример 5

Провести полное исследование функции и построить её график.

Решение : понеслась нелёгкая:

1) Функция определена и непрерывна на всей числовой прямой: .

Значит, данная функция является нечетной, её график симметричен относительно начала координат.

Очевидно, что функция непериодическая.

2) Асимптоты, поведение функции на бесконечности.

Так как функция непрерывна на , то вертикальные асимптоты отсутствуют

Для функции, содержащей экспоненту, типично раздельное исследование «плюс» и «минус бесконечности», однако нашу жизнь облегчает как раз симметрия графика – либо и слева и справа есть асимптота, либо её нет. Поэтому оба бесконечных предела можно оформить под единой записью. В ходе решения используем правило Лопиталя :

Прямая (ось ) является горизонтальной асимптотой графика при .

Обратите внимание, как я хитро избежал полного алгоритма нахождения наклонной асимптоты: предел вполне легален и проясняет поведение функции на бесконечности, а горизонтальная асимптота обнаружилась «как бы заодно».

Из непрерывности на и существования горизонтальной асимптоты следует тот факт, что функция ограничена сверху и ограничена снизу .

3) Точки пересечения графика с координатными осями, интервалы знакопостоянства.

Здесь тоже сокращаем решение:
График проходит через начало координат.

Других точек пересечения с координатными осями нет. Более того, интервалы знакопостоянства очевидны, и ось можно не чертить: , а значит, знак функции зависит только от «икса»:
, если ;
, если .

4) Возрастание, убывание, экстремумы функции.


– критические точки.

Точки симметричны относительно нуля, как оно и должно быть.

Определим знаки производной:


Функция возрастает на интервале и убывает на интервалах

В точке функция достигает максимума: .

В силу свойства (нечётности функции) минимум можно не вычислять:

Поскольку функция убывает на интервале , то, очевидно, на «минус бесконечности» график расположен под своей асимптотой. На интервале функция тоже убывает, но здесь всё наоборот – после перехода через точку максимума линия приближается к оси уже сверху.

Из вышесказанного также следует, что график функции является выпуклым на «минус бесконечности» и вогнутым на «плюс бесконечности».

После этого пункта исследования прорисовалась и область значений функции:

Если у вас возникло недопонимание каких-либо моментов, ещё раз призываю начертить в тетради координатные оси и с карандашом в руках заново проанализировать каждый вывод задания.

5) Выпуклость, вогнутость, перегибы графика.

– критические точки.

Симметрия точек сохраняется, и, скорее всего, мы не ошибаемся.

Определим знаки :


График функции является выпуклым на и вогнутым на .

Выпуклость/вогнутость на крайних интервалах подтвердилась.

Во всех критических точках существуют перегибы графика. Найдём ординаты точек перегиба, при этом снова сократим количество вычислений, используя нечётность функции:

В заданиях ЕГЭ по математике обязательно встретиться исследование функции с помощью производной. Математический анализ – не самая простая в мире вещь. Но в КИМах не встречается такого, с чем бы не справился ученик средней школы, если он приложил достаточно стараний к учебе.

Будем вместе разбираться, что такое производная и как ее применять при исследовании функции.

Производная

Начертите ось координат и постройте любую элементарную функцию. Например, параболу для функции у = х 2 .

Вы сами видите, что на некотором участке функция убывает, на другом – возрастает. То есть изменяется. Вот эту динамику, иными словами, скорость, с которой функция изменяется, отражает производная (у" = f’(x)).

Например, отметьте на своем чертеже точку на оси Х, пускай наша точка будет под цифрой 1 – это х 1 , на цифре 2 будет х 2 . Дальше будем оперировать такими понятиями, как приращение аргумента – ∆х и приращение функции – ∆у. Что это такое? ∆х показывает, как функция изменяется по оси Х, ∆у отражает изменение функции по оси У.

Предположим, мы движемся по графику от точки х 1 к точке х 2 . Перемещение вправо по оси Х отражает приращение аргумента ∆х, вызванное им перемещение вверх по оси У – приращение функции ∆у. Мы можем объединить обе величины в неравенстве ∆у/∆х > 0, поскольку приращения положительные – мы ведь движемся вверх по возрастающему графику, «по ходу движения».

Мы взяли две довольно далеко отстоящие друг от друга точки. Но вообще можем подобрать ∆х для любой точки на выбранном отрезке, чтобы получить ∆у > 0. И на любом участке, где функция убывает, мы можем подобрать такое приращение аргумента, при котором ∆у < 0 и ∆у/∆х < 0.

Чем меньшее расстояние мы будем рассматривать, тем точнее опишем скорость изменения функции. Не все ведь графики такие простые, как этот. Поэтому говорят, что приращение аргумента стремиться к нулю (∆х → 0), т.е. к минимальному своему значению.

Возможно и такое неравенство: ∆у/∆х = 0 в самой верхней и самой нижней точке графика. В нашем случае она приходится на начало координат.

Записанное нами неравенство ∆у/∆х отражает суть производной – речь идет о пределе отношения приращения функции к приращению аргумента.

Производная в точке vs производная функции

Мы начали с того, что выбрали точку, от которой «стартует» наше приращения функции. Иными словами, мы определяли приращение функции в точке х 1.

Значит, производной функции в точке х 1 называют предел приращения функции ∆у к приращению аргумента ∆х в этой точке, при том, что ∆х → 0.

Записать сказанное можно так: f"(х 1) = lim х→0 f (х 1 + ∆х) – f(х 1) / ∆х = lim х→0 ∆у/∆х. Можно также провести касательную к графику в точке х 1 , тогда производную можно выразить через тангенс угла ее наклона к графику: f"(х 1) = lim х→0 ∆у/∆х = tgφ.

Если у предела есть границы (т.е. он конечен), возможно дифференцировать функцию в точке. Это также будет обозначать, что в этой точке функция является непрерывной. ∆х → 0, но ∆х ≠ 0. Кстати, из одного того, что функция непрерывна, вовсе не следует, что эту функцию можно дифференцировать в обязательном порядке.

Если вы заинтересовались, как же так, предлагаю вам найти соответствующий пример самостоятельно – не все же готовым на блюдечке получать. Тем более что для заданий ЕГЭ знать это вам не обязательно. И даже, кощунственную вещь скажу, можно не понимать, что такое производная. Главное научиться ее находить.

Сейчас мы говорили о производной в точке х 1 , но аналогичным образом мы можем произвести все те же манипуляции с любой другой точкой, поэтому имеем право записать формулу производной функции так: f"(х) = lim х→0 f (х+ ∆х) – f(х) / ∆х = lim х→0 ∆у/∆х. Или иначе y" = f"(x), которая происходит, «производится» от функции y = f(x).

Вот несколько производных для примера, больше их вы найдете в таблице производных, а некоторые рекомендуется запомнить со временем:

  • производная константы (С)" = 0;
  • производная степенной функции (x n)’ = nx n -1 ;
  • ее разновидность производная числа (x)’ = 1;
  • а также (√x)’ = 1/2√x;
  • и (1/x)’ = -1/x 2 .

Правила дифференцирования

Дифференцировать – значить выделить некие признаки, в случае с функцией – скорость ее изменения, об этом мы уже говорили. Т.е. вычислить производную.

Для вычисления производной (дифференцирования) самых разных функций существуют определенные общие правила. Сейчас мы их коротко вспомним, воспользовавшись статьей Александра Емелина с отличного сайта, посвященного высшей математике mathprofi.ru.

    1. Постоянное число выносится за знак производной: (Cu)’ = Cu’, C = const.

      Y = 3cos x, y’ = (3 cos x)’ = 3 (cos x)’ = 3(-sin x) = -3sin x;

    2. Производная суммы равна сумме производных: (u ± v)’ = u’ ± v’ .

      Y = 6 + x + 3x 2 – sin x – 2 3 √x + 1/x 2 – 11ctg x, y’ = (6 + x + 3x 2 – sinx – 2 3 √x + 1/x 2 – 11ctg x)’ = (6)’ + (x)’ + 3(x 2)’ – (sin x)’ – 2(x 1/3)’+ (x -2)’ – 11(ctgx)’ = 0 + 1 + 3*2x – cos x – 2*1/3x -2/3 + (-2)x -3 – 11(-1/sin 2 x) = 1 + 6x – cos x – 2/3 3 √x 2 – 2/x 3 + 11/sin 2 x;

    3. Производная произведения функции: (uv)’ = u’v + uv’ .

      Y = x 3 arcsin x, y’ = (x 3 arcsin x)’ = (x 3)’ * arcsin x + x 3 * (arcsin x)’= 3x 2 arcsin x + x 3 * 1/√1 – x 2 = 3x 2 arcsin x + x 3 /√1 – x 2 ;

    4. Производная частного функции: (u/v)" = (u"v – uv")/v 2 .

      Y = 2(3x – 4)/ x 2 + 1, y’ = (2(3x – 4)/ x 2 + 1)’ = 2 (3x – 4/ x 2 +1)’ = 2 * ((3x – 4)’* (x 2 + 1) – (3x – 4) * (x 2 + 1)’/(x 2 + 1) 2) = 2 (3(x 2 + 1) - (3x – 4) * 2x/ (x 2 + 1) 2) = 2 (-3x 2 + 8x + 3)/ (x 2 + 1) 2 ;

    5. Производная сложной функции. Прямо сейчас она вам не понадобиться, поэтому ее мы рассматривать не будем.

Исследуем функцию с помощью производной

Итак, с присказкой разобрались, начинаем саму сказку. В части В КИМов по математике вам гарантировано попадется одна или даже нескольких задач, включающих исследование функции с помощью производной. К примеру, может потребоваться исследовать функцию на экстремумы, определить ее монотонность и т.д.

При помощи производной можно определить:

  • на каких интервалах график функции убывает и возрастает (исследуем монотонность);
  • минимальные и максимальные значения производной (исследуем на экстремумы);
  • наибольшее и наименьше значение функции, которая непрерывна на отрезке.

Сложность таких заданий зависит в первую очередь от того, какая функция попадется вам по условию. Но общий алгоритм действий останется для вас неизменным в любом случае. Вот и давайте разберем все по порядку.

Монотонность функции. Проще говоря, определение участков, на которых функция остается неизменной, т.е. «монотонной». А изменяется функция в критических точках, но про это ниже.

Порядок действий:

      1. Найдите производную.
      2. Найдите критические точки.
      3. Определите знак производной и характер ее изменений на интервалах, которые отмеряют критические точки (руководствуясь достаточными условиями монотонности).
      4. Запишите промежутки монотонности.

Функция возрастает, если большее значение функции соответствует большему значению аргумента: х 2 > х 1 и f(х 2) > f(х 1) на выбрано интервале. График при этом движется снизу вверх.

Функция убывает, если меньшее значение функции соответствует большему значению аргумента: х 2 > х 1 и f(х 2) < f(х 1) на выбранном интервале. График движется сверху вниз.

Поскольку функция возрастает и убывает в рамках интервала, ее можно назвать строго монотонной. А исследование функции на монотонность предполагает, что речь идет как раз об интервалах строгой монотонности.

Функция также может не убывать на интервале: f(х 2) ≥ f(х 1) – неубывающая функция. И аналогичным образом не возрастать на интервале: f(х 2) ≤ f(х 1) – невозрастающая функция.

Достаточные условия монотонности функции:

  • условие возрастания: если на выбранном интервале в каждой точке производная больше нуля (f"(х) > 0), то функция на этом интервале монотонно возрастает;
  • условие убывания: если на выбрано интервале в каждой точке производная меньше нуля (f"(х) < 0), то функция на этом интервале монотонно убывает;
  • условие постоянства (оно не только достаточное, но и необходимое): функция постоянна на выбранном интервале, когда производная равна нулю (f"(х) = 0) в каждой его точке.

Критической точкой называют ту, в которой производная равна нулю или ее значения не существует. Она может одновременно являться точкой экстремума, но может ею и не быть. Но об этом дальше.

Экстремумы функции. Т.е. такие значения переменной, при которой которых функция достигает своих максимальных и минимальных значений.

Порядок действий:

  • Обозначьте область определения функции, на каких интервалах она является непрерывной.
  • Найдите производную.
  • Найдите критические точки.
  • Определите, являются ли критические точки точками экстремумов (опираясь на достаточное условие экстремума).
  • Запишите экстремумы.

Необходимое условие экстремума:

  • Если х 0 – точка экстремума функции, то она является одновременно и критической точкой, в которой производная равна нулю или не существует.

Как уже говорилось выше, точка экстремума может и не совпадать с критической точкой. Например, для функции у = х 3 (рис.1), у =│х│(рис 2.), у = 3 √х точка экстремума отсутствует в критической точке.

Достаточное условия экстремума:

  • Если в точке х 0 функция является непрерывной, а ее производная меняет в ней знак, то х 0 – точка экстремума функции.

Если при переходе через точку х 0 изменяется знак производной с «+» на «-», то в данной точке функция достигает своего максимума: f"(х) > 0 при х < х 0 и f"(х) < 0 при х > х 0 .

Если при переходе через точку х 0 изменяется знак производной с «-» на «+», то в данной точке функция достигает своего минимума: f"(х) < 0 при х < х 0 и f"(х) > 0 при х > х 0 .

На графике точки экстремума отражают значения по оси Х, а экстремумы – значения по оси У. Их еще называют точками локального экстремума и локальными экстремумами . Но прямо сейчас знание о различиях между локальными и глобальными экстремумами вам не потребуется, поэтому останавливаться на этом не будем.

Максимум и минимум функции – не тождественные понятия с ее наибольшим и наименьшим значением. О том, что же этакое, ниже.

Наибольшее и наименьше значение функции, которая непрерывна на отрезке. Мы рассматриваем функцию на выбранном отрезке. Если функция в его пределах является непрерывной, то ее наибольшее и наименьшее значение на отрезке приходятся либо на критические точки, которые ему принадлежат, либо на точки на его концах.

Порядок действий:

      1. Наудите производную.
      2. Найдите критические точки в пределах отрезка.
      3. Вычислите значение функции в критических точках и на концах отрезка.
      4. Из полученных значений выберите наибольшее и наименьшее.

Исследуем функцию – зачем?

Для чего нам исследовать функцию с помощью производной? Затем, чтобы лучше понять, как выглядит ее график. Да, сейчас в учебниках перед вами готовые графики к хорошо изученным элементарным функциям. Но в реальных «полевых» условиях дело зачастую обстоит с точностью до наоборот: незнакомая функция и пока не существующий график. И не все функции такие простые, как в школьных учебниках. Их графики одной лишь силой воображения представить невозможно.

Средства математического анализа позволяют досконально исследовать неизвестную функцию. Не разобрав подробно по полочкам все характеристики функции и ее производной верный график не построить. Именно поэтому в школьном курсе математики соответствующим заданиям уделяется такое внимание. И поэтому они вынесены на экзамен.

Задания части В стоят довольно высоких баллов. Поэтому уделите должное внимание тренировке определения производной и исследования функции с ее помощью. Эта статья создана как полезный при самоподготовке конспект. В котором собраны ключевые определения, пересказанные по возможности простым языком. И кратко изложены действия, которые вам следует предпринять при исследовании функции.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Точка называется точкой максимума (минимума) функции , если существует такая окрестность точки , что для всех из этой окрестности выполняется неравенство ().

Точки максимума и минимума функции называются точками экстремума (рис. 25).

Теорема 3.9 (необходимое условия существования точек экстремума). В критических точках 1-го рода производная функции либо

равна нулю, либо не существует

Критические точки 1-го рода принято называть просто критическими точками.

Критические точки, в которых производная функции равна нулю, называются точками стационарности . Критические точки, в которых функция непрерывна, но не дифференцируема называются угловыми точками . Например, функция в точке непрерывна, но производной не имеет, так как в этой точке к графику функции можно провести бесконечное множество касательных (рис. 26). Данный случай можно рассматривать в качестве подтверждения тому, что обратное утверждение к теореме 3.3 является неверным.

Функция называется возрастающей на некотором интервале , если на этом интервале большему значению аргумента соответствует большее значение переменной , и убывающей , если большему значению аргумента соответствует меньшее значение переменной .

Для дальнейшего исследования критические точки помещают на числовую ось, которая делится этими точками на интервалы, после чего поверяют выполнение следующих достаточных условий.

Теорема 3.10 (достаточное условие возрастания и убывания функции). Если на некотором интервале функция дифференцируема и при этом ее производная положительна (отрицательна), то функция на данном интервале возрастает (убывает)

Теорема 3.11 (достаточное условие существования точек экстремума функции). Если функция непрерывна и дифференцируема в некоторой окрестности критической точки и при переходе через нее производная меняет знак с плюса на минус, то точка является точкой максимума; если с минуса на плюс, то точка является точкой минимума функции

Те критические точки функции, для которых достаточное условие не выполняется, остаются просто критическими точками 1-го рода.

Критические точки 1-го рода, в которых производная не существует, делятся на два класса:

– точки, в которых функция непрерывна (при выполнении для них теоремы 3.11 функция в данных точках имеет «острый» экстремум), это угловые точки;

– точки, в которых функция терпит разрыв (всегда переходят в класс критических точек 2-го рода).

Но проведенное таким образом исследование, не дает ответ на очень важный вопрос: как возрастает (убывает) функция – выпукло или вогнуто? Ответ на поставленный вопрос дает дальнейшее исследование функции с помощью второй производной. Дадим ряд необходимых определений.

Функция называется выпуклой (вогнутой ) на некотором интервале , если касательная, проведенная к графику функции в каждой точке этого интервала, лежит выше (ниже) графика функции.

Точки, отделяющие участки выпуклости от участков вогнутости функции, называются ее точками перегиба (рис. 27).

Теорема 3.12 (необходимое условие существования точек перегиба) . В критических точках 2-го рода вторая производная функции либо равна нулю, либо не существует

Для дальнейшего исследования критические точки 2-го рода помещают на числовую ось, которая делится этими точками на интервалы, после чего поверяют выполнение следующих достаточных условий.

Теорема 3.13 (достаточное условие выпуклости и вогнутости функции). Если на некотором интервале функция дважды дифференцируема и при этом ее вторая производная положительна (отрицательна), то функция на данном интервале вогнута (выпукла)

Те критические точки функции, для которых достаточное условие не выполняется, остаются просто критическими точками 2-го рода.

Критические точки 2-го рода, в которых вторая производная не существует, делятся на два класса:

– точки, в которых функция непрерывна, это так называемые точки «острого» перегиба – в таких точках к графику функции можно провести бесконечное множество касательных (рис. 28);

– точки, в которых функция терпит разрыв (в точках разрыва 2-го рода график функции имеет вертикальную асимптоту).

Для окончательного перечисления точек экстремума и перегиба функции необходимо найти их ординаты, после чего выписать указанные точки двумя координатами.

Вопросы для самопроверки.

1. Какие точки называются точками экстремума (максимума и минимума) функции?

2. Какая функция называется возрастающей (убывающей)?

3. Каковы необходимое и достаточное условия существования точек экстремума функции?

4. В чем состоит достаточное условие возрастания (убывания) функции?

5. Какие точки называются точками перегиба функции?

6. Какая функция называется выпуклой (вогнутой)?

7. Каковы необходимое и достаточное условия существования точек перегиба функции?

8. В чем состоит достаточное условие выпуклости (вогнутости) функции?