Науки        14.10.2021   

Графики функций егэ как решать. ЕГЭ

Сергей Никифоров

Если производная функции знакопостоянна на интервале, а сама функция непрерывна на его границах, то граничные точки при­со­еди­ня­ют­ся как к про­ме­жут­кам воз­рас­та­ния, так и к про­ме­жут­кам убы­ва­ния, что полностью соответствует определению возрастающих и убывающих функций.

Фарит Ямаев 26.10.2016 18:50

Здравствуйте. Как же (на каком основании) можно утверждать, что в точке, где производная равна нулю, функция возрастает. Приведите доводы. Иначе, это просто чей-то каприз. По какой теореме? А также доказательство. Спасибо.

Служба поддержки

Значение производной в точке не имеет прямого отношения к возрастанию функции на промежутке. Рассмотрите, например, функции - все они возрастают на отрезке

Владлен Писарев 02.11.2016 22:21

Если функция возрастает на интервале (а;b) и определена и непрерывна в точках а и b, то она возрастает на отрезке . Т.е. точка x=2 входит в данный промежуток.

Хотя, как правило возрастание и убывание рассматривается не на отрезке, а на интервале.

Но в самой точке x=2, функция имеет локальный минимум. И как объяснять детям, что когда они ищут точки возрастания (убывания), то точки локального экстремума не считаем, а в промежутки возрастания (убывания) - входят.

Учитывая, что первая часть ЕГЭ для "средней группы детского сада", то наверное такие нюансы- перебор.

Отдельно, большое спасибо за "Решу ЕГЭ" всем сотрудникам- отличное пособие.

Сергей Никифоров

Простое объяснение можно получить, если отталкиваться от определения возрастающей/убывающей функции. Напомню, что звучит оно так: функция называется возрастающей/убывающей на промежутке, если большему аргументу функции соответствует большее/меньшее значение функции. Такое определение никак не использует понятие производной, поэтому вопросов о точках, где производная обращается в ноль возникнуть не может.

Ирина Ишмакова 20.11.2017 11:46

Добрый день. Здесь в комментариях я вижу убеждения, что границы включать нужно. Допустим, я с этим соглашусь. Но посмотрите, пожалуйста, ваше решение к задаче 7089. Там при указании промежутков возрастания границы не включаются. И это влияет на ответ. Т.е. решения заданий 6429 и 7089 противоречат друг другу. Проясните, пожалуйста, эту ситуацию.

Александр Иванов

В заданиях 6429 и 7089 совершенно разные вопросы.

В одном про промежутки возрастания, а в другом про промежутки с положительной производной.

Противоречия нет.

Экстремумы входят в промежутки возрастания и убывания, но точки, в которых производная равна нулю, не входят в промежутки, на которых производная положительна.

A Z 28.01.2019 19:09

Коллеги, есть понятие возрастания в точке

(см. Фихтенгольц например)

и ваше понимание возрастания в точке x=2 противочет классическому определению.

Возрастание и убывание это процесс и хотелось бы придерживаться этого принципа.

В любом интервале, который содержит точку x=2, функция не является возрастающей. Поэтому включение данный точки x=2 процесс особый.

Обычно, чтобы избежать путаницы о включении концов интервалов говорят отдельно.

Александр Иванов

Функция y=f(x) называется возрастающей на некотором промежутке, если бо́льшему значению аргумента из этого промежутка соответствует бо́льшее значение функции.

В точке х=2 функция дифференцируема, а на интервале (2; 6) производная положительна, значит, на промежутке . Исследуйте функцию на монотонность и укажите наибольшую точку максимума. 3 2 4 5 Подумай! Подумай! Верно! Подумай! y = f / (x) + + + - - О - f / (x) - + - + - + f(x) -4 -2 0 3 4 Из двух точек максимума наибольшая х max = 3 max max y

7) На рисунке изображен график производной функции. Найдите длину промежутка возрастания этой функции. Проверка О -7 -6 -5 -4 -3 -2 -1 7 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6 -7 4 2 3 5 ПОДУМАЙ! + ПОДУМАЙ! ВЕРНО! ПОДУМАЙ! y х 3 y = f / (x)

4 -3 -2 -1 1 2 3 4 5 х 6) На рисунке изображен график производной функции, заданной на промежутке [-5;5] . Исследуйте функцию у = f (x) на монотонность и укажите число промежутков убывания. 3 2 4 1 Подумай! Подумай! Верно! Подумай! y = f / (x) f(x) -4 -2 0 4 f / (x) - + - + - + + О - - - y

Задачи на определение характеристик производной по графику функции.

На рисунке изображён график дифференцируемой функции y = f (x). На оси абсцисс отмечены девять точек: x 1 , x 2 , ..., x 9 . Найдите все отмеченные точки, в которых производная функции f (x) отрицательна. В ответе укажите количество этих точек.

На рисунке изображен график функции y = f (x) , определенной на интервале (a ; b). Определите количество целых точек, в которых производная функции положительна. a) б) Решите самостоятельно! Решение. , если возрастает. Целые решения при: х=-2; х=-1; х=5; х=6. Их количество равно 4. Целые решения при: х=2; х=3; х=4; х=10; х=11. Их количество равно 5. Ответ: 4. Ответ: 5.

Задачи на физический смысл производной

Ответ: 3 Ответ: 14

ЗАДАНИЕ № 12 Математика профильный уровень

Самостоятельная работа в парах Задание № 12 Профильный уровень

Предварительный просмотр:

Приложение 3 индивидуальные карточки № 12

1. Найдите точку максимума функции 1 Найдите точку минимума функции

2.Найдите точку максимума функции 2Найдите точку минимума функции

Линник Д. Вовненко Я

1.Найдите наименьшее значение функции 1. Найдите наибольшее значение функции на отрезке

на отрезке

Вегельман В.

Логвинюк А.

1. Найдите точку максимума функции 1. Найдите точку минимума функции

2. Найдите наименьшее значение функции 2. Найдите наибольшее значение функции на отрезке

На отрезке

Леонтьева А. Исаенко К.
























































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тип урока: повторение и обобщение.

Форма урока: урок-консультация.

Цели урока:

  • обучающая : повторить и обобщить теоретические знания по темам: “Геометрический смысл производной” и “Применение производной к исследованию функций”; рассмотреть все типы задач В8, встречающиеся на ЕГЭ по математике; предоставить обучающимся возможность проверить свои знания при самостоятельном решении задач; научить заполнять экзаменационный бланк ответов;
  • развивающая : способствовать развитию общения как метода научного познания, смысловой памяти и произвольного внимания; формированию таких ключевых компетенций, как сравнение, сопоставление, классификация объектов, определение адекватных способов решения учебной задачи на основе заданных алгоритмов, способность самостоятельно действовать в ситуации неопределённости, контролировать и оценивать свою деятельность, находить и устранять причины возникших трудностей;
  • воспитательная : развивать у обучающихся коммуникативные компетенции (культуру общения, умение работать в группах); способствовать развитию потребности к самообразованию.

Технологии: развивающего обучения, ИКТ.

Методы обучения: словесный, наглядный, практический, проблемный.

Формы работы: индивидуальная, фронтальная, групповая.

Учебно-методическое обеспечение:

1. Алгебра и начала математического анализа.11 класс: учеб. Для общеобразоват. Учреждений: базовый и профил. уровни / (Ю. М. Колягин, М.В.Ткачёва, Н. Е. Фёдорова, М. И. Шабунин); под редакцией А. Б. Жижченко. – 4-е изд. – М. : Просвещение, 2011.

2. ЕГЭ: 3000 задач с ответами по математике. Все задания группы В / А.Л. Семёнов, И.В. Ященко и др. ; под редакцией А.Л. Семёнова, И.В. Ященко. – М.: Издательство “Экзамен”, 2011.

3. Открытый банк заданий.

Оборудование и материалы для урока: проектор, экран, ПК для каждого ученика с установленной на него презентацией, для всех обучающихся распечатка памятки (Приложение 1) и оценочный лист (Приложение 2) .

Предварительная подготовка к уроку: в качестве домашнего задания обучающимся предлагается повторить по учебнику теоретический материал по темам: “Геометрический смысл производной”, “Применение производной к исследованию функций”; класс разбивается на группы (по 4 человека), в каждой из которых обучающиеся разных уровней.

Пояснение к уроку: данный урок проводится в 11 классе на этапе повторения и подготовки к ЕГЭ. Урок нацелен на повторение и обобщение теоретического материала, на применение его при решении экзаменационных задач. Продолжительность урока - 1,5 часа.

Данный урок не прикреплён к учебнику, поэтому может проводиться при работе по любому УМК. Также этот урок можно разбить на два отдельных и провести их как итоговые уроки по рассматриваемым темам.

Ход урока

I. Организационный момент.

II. Постановка целей урок.

III. Повторение по теме “Геометрический смысл производной”.

Устная фронтальная работа с использованием проектора (слайды №3-7)

Работа в группах: решение задач с подсказками, ответами, с консультацией учителя (слайды №8-17)

IV. Самостоятельная работа 1.

Обучающиеся работают индивидуально на ПК (слайды№18-26), свои ответы заносят в оценочный лист. Если необходимо, можно взять консультацию учителя, но в этом случае ученик потеряет 0,5 балла. Если ученик справится с работой раньше, то он может выбрать для решения дополнительные задания из сборника , стр.242, 306-324 (дополнительные задания оцениваются отдельно).

V. Взаимопроверка.

Обучающиеся обмениваются оценочными листами, проверяют работу товарища, выставляют баллы (слайд №27)

VI. Коррекция знаний.

VII. Повторение по теме “Применение производной к исследованию функций”

Устная фронтальная работа с использованием проектора (слайды №28-30)

Работа в группах: решение задач с подсказками, ответами, с консультацией учителя (слайды № 31-33)

VIII. Самостоятельная работа 2.

Обучающиеся работают индивидуально на ПК (слайды №34-46), свои ответы заносят в бланк ответов. Если необходимо, можно взять консультацию учителя, но в этом случае ученик потеряет 0,5 балла. Если ученик справится с работой раньше, то он может выбрать для решения дополнительные задания из сборника , стр.243-305 (дополнительные задания оцениваются отдельно).

IX. Взаимопроверка.

Обучающиеся обмениваются оценочными листами, проверяют работу товарища, выставляют баллы (слайд № 47).

X. Коррекция знаний.

Обучающиеся снова работают в своих группах, обсуждают решение, исправляют ошибки.

XI. Подведение итогов.

Каждый ученик подсчитывает свои баллы и выставляет в оценочный лист оценку.

Обучающиеся сдают учителю оценочный лист и решение дополнительных задач.

Каждый ученик получает памятку (слайд №53-54).

XII. Рефлексия.

Обучающимся предлагается оценить свои знания, выбрав одну из фраз:

  • У меня всё получилось!!!
  • Надо решить ещё пару примеров.
  • Ну кто придумал эту математику!

XIII. Домашнее задание.

Для домашней работы учащимся предлагается выбрать для решения задания из сборника , стр. 242-334, а также из открытого банка заданий.

Производная функции - одна из сложных тем в школьной программе. Не каждый выпускник ответит на вопрос, что такое производная.

В этой статье просто и понятно рассказано о том, что такое производная и для чего она нужна . Мы не будем сейчас стремиться к математической строгости изложения. Самое главное - понять смысл.

Запомним определение:

Производная - это скорость изменения функции.

На рисунке - графики трех функций. Как вы думаете, какая из них быстрее растет?

Ответ очевиден - третья. У нее самая большая скорость изменения, то есть самая большая производная.

Вот другой пример.

Костя, Гриша и Матвей одновременно устроились на работу. Посмотрим, как менялся их доход в течение года:

На графике сразу все видно, не правда ли? Доход Кости за полгода вырос больше чем в два раза. И у Гриши доход тоже вырос, но совсем чуть-чуть. А доход Матвея уменьшился до нуля. Стартовые условия одинаковые, а скорость изменения функции, то есть производная , - разная. Что касается Матвея - у его дохода производная вообще отрицательна.

Интуитивно мы без труда оцениваем скорость изменения функции. Но как же это делаем?

На самом деле мы смотрим, насколько круто идет вверх (или вниз) график функции. Другими словами - насколько быстро меняется у с изменением х. Очевидно, что одна и та же функция в разных точках может иметь разное значение производной - то есть может меняться быстрее или медленнее.

Производная функции обозначается .

Покажем, как найти с помощью графика.

Нарисован график некоторой функции . Возьмем на нем точку с абсциссой . Проведём в этой точке касательную к графику функции. Мы хотим оценить, насколько круто вверх идет график функции. Удобная величина для этого - тангенс угла наклона касательной .

Производная функции в точке равна тангенсу угла наклона касательной, проведённой к графику функции в этой точке.

Обратите внимание - в качестве угла наклона касательной мы берем угол между касательной и положительным направлением оси .

Иногда учащиеся спрашивают, что такое касательная к графику функции. Это прямая, имеющая на данном участке единственную общую точку с графиком, причем так, как показано на нашем рисунке. Похоже на касательную к окружности.

Найдем . Мы помним, что тангенс острого угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему. Из треугольника :

Мы нашли производную с помощью графика, даже не зная формулу функции. Такие задачи часто встречаются в ЕГЭ по математике под номером .

Есть и другое важное соотношение. Вспомним, что прямая задается уравнением

Величина в этом уравнении называется угловым коэффициентом прямой . Она равна тангенсу угла наклона прямой к оси .

.

Мы получаем, что

Запомним эту формулу. Она выражает геометрический смысл производной.

Производная функции в точке равна угловому коэффициенту касательной, проведенной к графику функции в этой точке.

Другими словами, производная равна тангенсу угла наклона касательной.

Мы уже сказали, что у одной и той же функции в разных точках может быть разная производная. Посмотрим, как же связана производная с поведением функции.

Нарисуем график некоторой функции . Пусть на одних участках эта функция возрастает, на других - убывает, причем с разной скоростью. И пусть у этой функции будут точки максимума и минимума.

В точке функция возрастает. Касательная к графику, проведенная в точке , образует острый угол с положительным направлением оси . Значит, в точке производная положительна.

В точке наша функция убывает. Касательная в этой точке образует тупой угол с положительным направлением оси . Поскольку тангенс тупого угла отрицателен, в точке производная отрицательна.

Вот что получается:

Если функция возрастает, ее производная положительна.

Если убывает, ее производная отрицательна.

А что же будет в точках максимума и минимума? Мы видим, что в точках (точка максимума) и (точка минимума) касательная горизонтальна. Следовательно, тангенс угла наклона касательной в этих точках равен нулю, и производная тоже равна нулю.

Точка - точка максимума. В этой точке возрастание функции сменяется убыванием. Следовательно, знак производной меняется в точке с «плюса» на «минус».

В точке - точке минимума - производная тоже равна нулю, но ее знак меняется с «минуса» на «плюс».

Вывод: с помощью производной можно узнать о поведении функции всё, что нас интересует.

Если производная положительна, то функция возрастает.

Если производная отрицательная, то функция убывает.

В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».

В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».

Запишем эти выводы в виде таблицы:

возрастает точка максимума убывает точка минимума возрастает
+ 0 - 0 +

Сделаем два небольших уточнения. Одно из них понадобится вам при решении задач ЕГЭ. Другое - на первом курсе, при более серьезном изучении функций и производных.

Возможен случай, когда производная функции в какой-либо точке равна нулю, но ни максимума, ни минимума у функции в этой точке нет. Это так называемая :

В точке касательная к графику горизонтальна, и производная равна нулю. Однако до точки функция возрастала - и после точки продолжает возрастать. Знак производной не меняется - она как была положительной, так и осталась.

Бывает и так, что в точке максимума или минимума производная не существует. На графике это соответствует резкому излому, когда касательную в данной точке провести невозможно.

А как найти производную, если функция задана не графиком, а формулой? В этом случае применяется