Математика        26.01.2024   

Тангенциальное ускорение во вращательном движении формула. Тангенциальное, или касательное ускорение

Ускорение – это величина, которая характеризует быстроту изменения скорости.

Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, скорость – это векторная величина).

> – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

Рис. 1.8. Среднее ускорение. В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с 2 , то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.

Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:

При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть

V 2 > v 1

а направление вектора ускорения совпадает с вектором скорости

Если скорость тела по модулю уменьшается, то есть

V 2 < v 1

то направление вектора ускорения противоположно направлению вектора скорости Иначе говоря, в данном случае происходит замедление движения , при этом ускорение будет отрицательным (а < 0). На рис. 1.9 показано направление векторов ускорения при прямолинейном движении тела для случая ускорения и замедления.

Рис. 1.9. Мгновенное ускорение.

При движении по криволинейной траектории изменяется не только модуль скорости, но и её направление. В этом случае вектор ускорение представляют в виде двух составляющих (см. следующий раздел).

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рис. 1.10. Тангенциальное ускорение.

Направление вектора тангенциального ускорения (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по и определяется формулой:

(согласно теореме Пифагора для прямоугольно прямоугольника).

Рассмотрим некоторые простейшие виды движения точки, часто встречающиеся в практике.

Равномерным движением точки называется движение ее с постоянной величиной алгебраической скорости или

где С - постоянная интегрирования.

Пусть в начальный момент времени положение точки М на траектории характеризовалось тогда и

Таким образом, при равномерном движении путь, проходимый точкой, линейно зависит от времени.

Равнопеременное движение точки

Равнопеременным движением точки называется такое движение ее, при котором алгебраическая величина тангенциального ускорения остается постоянной:

Если знак а совпадает со знаком скорости, то движение называется равноускоренным. При несовпадении знаков а и движение называется равнозамедленным. Из последнего равенства имеем:

где постоянная интегрирования. Если при то

Таким образом, при равномерном движении скорость линейно зависит от времени. Переписывая последнее равенство в виде:

где -постоянная интегрирования. Определяя из условия, что при находим

Таким образом, при равнопеременном движении путь, проходимый точкой, представляет собой квадратный трехчлен от t.

Круговое движение точки

Движение точки по окружности или круговое движение часто встречается в практике. Пусть точка М движется по окружности радиуса R против хода часовой стрелки (рис. 24). Отсчитывая дугу от некоторого начального положения точки, запишем ее через центральный угол в виде:

Алгебраическая скорость точки будет:

где - называется угловой скоростью точки и обозначается через со, размерность ее .

Используя понятие угловой скорости, запишем:

Отсюда, скорость точки в круговом движении равна произведению радиуса траектории на угловую скорость.

Тангенциальное ускорение точки равно:

где - называется угловым ускорением и обозначается через размерность его ,

Нормальное ускорение точки будет:

Так как оно направлено к центру окружности, то его часто называют центростремительным. Модуль полного ускорения точки равен

При равномерном движении точки по окружности Следовательно, касательное ускорение в этом случае отсутствует и имеется лишь постоянное по величине центростремительное ускорение.

При равнопеременном круговом движении

Физический смысл тангенциального и нормального ускорения точки

Введение понятия равномерного и равнопеременного движения точки позволяет указать физический смысл тангенциального и нормального ускорения точки. Действительно, пусть тангенциальное ускорение всюду равно нулю:

Тогда, если то из последнего равенства имеем:

или движение точки совершается с постоянной по величине скоростью, т. е. точка движется равномерно.

Отсюда можно сделать вывод, что наличие тангенциального ускорения характеризует неравномерность движения точки по траектории. Пусть далее нормальное ускорение равно нулю:

Тогда, если то нормальное ускорение может тождественно равняться нулю только в случае, когда

или траектория точки есть прямая - движение прямолинейное.

Таки образом, отсутствие нормального ускорения в течение некоторого интервала времени свидетельствует о прямолинейности движения. Отсюда можно сделать вывод, что наличие нормального ускорения указывает на кривизну траектории.

Если одновременно тангенциальное и нормальное ускорения равны тождественно нулю, то движение точки будет равномерным и прямолинейным. Если только в отдельный момент времени тангенциальное ускорение равно нулю, то это указывает на то, что на графике функции этому моменту соответствуют экстремумы функции или ее точки перегиба. Если только в отдельный момент времени нормальное ускорение равно нулю, то это указывает на то, что в этот момент скорость движущейся точки равна нулю или радиус кривизны траектории равен бесконечности.


Изучение физики начинают с рассмотрения механического движения. В общем случае тела движутся по кривым траекториям с переменными скоростями. Для их описания используют понятие ускорения. В данной статье рассмотрим, что такое тангенциальное и нормальное ускорение.

Кинематические величины. Скорость и ускорение в физике

Кинематика механического движения - это раздел физики, который занимается изучением и описанием перемещения тел в пространстве. Кинематика оперирует тремя главными величинами:

  • пройденный путь;
  • скорость;
  • ускорение.

В случае движения по окружности используют аналогичные кинематические характеристики, которые приведены к центральному углу окружности.

С понятием скорости знаком каждый. Она показывает быстроту изменения координат тел, находящихся в движении. Скорость всегда направлена по касательной к линии, вдоль которой тело перемещается (траектории). Далее линейную скорость будем обозначать v¯, а угловую скорость - ω¯.

Ускорение - это скорость изменения величин v¯ и ω¯. Ускорение - это тоже однако ее направление совершенно не зависит от вектора скорости. Ускорение всегда направлено в сторону действующей на тело силы, которая вызывает изменение вектора скорости. Ускорение для любого типа движения можно рассчитать по формуле:

Чем сильнее изменится скорость за интервал времени dt, тем больше будет ускорение.

Касательное и нормальное ускорение

Предположим, что материальная точка движется по некоторой кривой линии. Известно, что в некоторый момент времени t ее скорость была равна v¯. Поскольку скорость - это касательный к траектории вектор, ее можно представить в следующем виде:

Здесь v - длина вектора v¯, а u t ¯ - единичный вектор скорости.

Чтобы вычислить вектор полного ускорения в момент времени t, необходимо найти производную скорости по времени. Имеем:

a¯ = dv¯ / dt = d (v × u t ¯) / dt

Поскольку модуль скорости и единичный вектор изменяются со временем, то, пользуясь правилом нахождения производной от произведения функций, получаем:

a¯ = dv / dt × u t ¯ + d (u t ¯) / dt × v

Первое слагаемое в формуле называется тангенциальной, или касательной компонентой ускорения, второе слагаемое - это нормальное ускорение.

Касательное ускорение

Еще раз запишем формулу для вычисления касательного ускорения:

a t ¯ = dv / dt × u t ¯

Это равенство означает, что тангенциальное (касательное) ускорение направлено так же, как вектор скорости в любой точке траектории. Оно численно определяет изменение модуля скорости. Например, в случае прямолинейного движения состоит только из касательной составляющей. Нормальное ускорение при таком типе перемещения равно нулю.

Причиной появления величины a t ¯ является воздействие внешней силы на движущееся тело.

В случае вращения с постоянным угловым ускорением α тангенциальная составляющая ускорения может быть вычислена по следующей формуле:

Здесь r - это радиус вращения рассматриваемой материальной точки, для которой вычисляется величина a t .

Нормальное или центростремительное ускорение

Теперь выпишем еще раз вторую компоненту полного ускорения:

a c ¯ = d (u t ¯) / dt × v

Из геометрических соображений можно показать, что производная единичного касательного к траектории вектора по времени равна отношению модуля скорости v к радиусу r в момент времени t. Тогда выражение выше запишется так:

Эта формула нормального ускорения свидетельствует, что оно, в отличие от касательной компоненты, не зависит от изменения скорости, а определяется квадратом модуля самой скорости. Также a c возрастает с уменьшением радиуса вращения при постоянной величине v.

Нормальное ускорение называют центростремительным потому, что оно направлено от центра масс вращающегося тела к оси вращения.

Причиной появления этого ускорения является центральная компонента воздействующей на тело силы. Например, в случае вращения планет вокруг нашего Солнца центростремительной силой является гравитационное притяжение.

Нормальное ускорение тела изменяет только направление скорости. Оно не способно изменить ее модуль. Этот факт является важным его отличием от касательной компоненты полного ускорения.

Поскольку центростремительное ускорение возникает всегда, когда вектор скорости поворачивается, то оно существует также в случае равномерного вращения по окружности, при котором тангенциальное ускорение равно нулю.

На практике ощутить на себе влияние нормального ускорения можно, если находиться в машине, когда она совершает затяжной поворот. В этом случае пассажиров прижимает к противоположной направлению поворота двери автомобиля. Это явление - результат действия двух сил: центробежной (смещение пассажиров со своих мест) и центростремительной (давление на пассажиров со стороны двери автомобиля).

Модуль и направление полного ускорения

Итак, мы выяснили, что тангенциальная компонента рассматриваемой физической величины направлена по касательной к траектории движения. В свою очередь, нормальная компонента перпендикулярна траектории в данной точке. Это означает, что две компоненты ускорения перпендикулярны друг другу. Их векторное сложение дает вектор полного ускорения. Вычислить его модуль можно по следующей формуле:

a = √(a t 2 + a c 2)

Направление вектора a¯ можно определить как относительно вектора a t ¯, так и относительно a c ¯. Для этого следует использовать соответствующую тригонометрическую функцию. Например, угол между полным и нормальным ускорениями равен:

Решение задачи на определение центростремительного ускорения

Колесо, которое имеет радиус 20 см, раскручивается с угловым ускорением 5 рад/с 2 в течение 10 секунд. Необходимо определить нормальное ускорение точек, находящихся на периферии колеса, через указанное время.

Для решения задачи воспользуемся формулой связи между тангенциальным и угловым ускорениями. Получаем:

Поскольку равноускоренное движение длилось в течение времени t = 10 секунд, то приобретенная за это время линейная скорость была равна:

v = a t × t = α × r × t

Полученную формулу подставляем в соответствующее выражение для нормального ускорения:

a c = v 2 / r = α 2 × t 2 × r

Остается подставить известные значения в это равенство и записать ответ: a c = 500 м/с 2 .

Разложение ускорения a (t) {\displaystyle \mathbf {a} (t)\ \ } на тангенциальное и нормальное a n {\displaystyle \mathbf {a} _{n}} ; ( τ {\displaystyle \mathbf {\tau } } - единичный касательный вектор).

Тангенциа́льное ускоре́ние - компонента ускорения , направленная по касательной к траектории движения. Характеризует изменение модуля скорости в отличие от нормальной компоненты , характеризующей изменение направления скорости. Тангенциальное ускорение равно произведению единичного вектора, направленного по скорости движения, на производную модуля скорости по времени. Таким образом, направлено в ту же сторону, что и вектор скорости при ускоренном движении (положительная производная) и в противоположную при замедленном (отрицательная производная).

Обозначается обычно символом, выбранным для ускорения, с добавлением индекса, обозначающего тангенциальную компоненту: a τ {\displaystyle \mathbf {a} _{\tau }\ \ } или a t {\displaystyle \mathbf {a} _{t}\ \ } , w τ {\displaystyle \mathbf {w} _{\tau }\ \ } , u τ {\displaystyle \mathbf {u} _{\tau }\ \ } и т. д.

Иногда используется не векторная форма, а скалярная - a τ {\displaystyle a_{\tau }\ \ } , обозначающая проекцию полного вектора ускорения на единичный вектор касательной к траектории, что соответствует коэффициенту разложения по сопутствующему базису .

Энциклопедичный YouTube

  • 1 / 5

    Величину тангенциального ускорения как проекцию вектора ускорения на касательную к траектории можно выразить так:

    a τ = d v d t , {\displaystyle a_{\tau }={\frac {dv}{dt}},}

    где v = d l / d t {\displaystyle v\ =dl/dt} - путевая скорость вдоль траектории, совпадающая с абсолютной величиной мгновенной скорости в данный момент.

    Если использовать для единичного касательного вектора обозначение e τ {\displaystyle \mathbf {e} _{\tau }\ } , то можно записать тангенциальное ускорение в векторном виде:

    a τ = d v d t e τ . {\displaystyle \mathbf {a} _{\tau }={\frac {dv}{dt}}\mathbf {e} _{\tau }.}

    Вывод

    Вывод 1

    Выражение для тангенциального ускорения можно найти, продифференцировав по времени вектор скорости , представленный в виде v = v e τ {\displaystyle \mathbf {v} =v\,\mathbf {e} _{\tau }} через единичный вектор касательной e τ {\displaystyle \mathbf {e} _{\tau }} :

    a = d v d t = d (v e τ) d t = d v d t e τ + v d e τ d t = d v d t e τ + v d e τ d l d l d t = d v d t e τ + v 2 R e n , {\displaystyle \mathbf {a} ={\frac {d\mathbf {v} }{dt}}={\frac {d(v\,\mathbf {e} _{\tau })}{dt}}={\frac {\mathrm {d} v}{\mathrm {d} t}}\mathbf {e} _{\tau }+v{\frac {d\mathbf {e} _{\tau }}{dt}}={\frac {\mathrm {d} v}{\mathrm {d} t}}\mathbf {e} _{\tau }+v{\frac {d\mathbf {e} _{\tau }}{dl}}{\frac {dl}{dt}}={\frac {\mathrm {d} v}{\mathrm {d} t}}\mathbf {e} _{\tau }+{\frac {v^{2}}{R}}\mathbf {e} _{n}\ ,}

    где первое слагаемое - тангенциальное ускорение, а второе - нормальное ускорение .

    Здесь использовано обозначение e n {\displaystyle e_{n}\ } для единичного вектора нормали к траектории и l {\displaystyle l\ } - для текущей длины траектории ( l = l (t) {\displaystyle l=l(t)\ } ); в последнем переходе также использовано очевидное

    d l / d t = v {\displaystyle dl/dt=v\ }

    и, из геометрических соображений,

    d e τ d l = e n R . {\displaystyle {\frac {d\mathbf {e} _{\tau }}{dl}}={\frac {\mathbf {e} _{n}}{R}}.}

    Вывод 2

    Если траектория гладкая (что предполагается), то:

    То и другое следует из того, что угол вектора к касательной будет не ниже первого порядка по . Отсюда сразу же следует искомая формула.

    Говоря менее строго, проекция v {\displaystyle \mathbf {v} \ } на касательную при малых d t {\displaystyle dt\ } будет практически совпадать с длиной вектора v {\displaystyle \mathbf {v} \ } , поскольку угол отклонения этого вектора от касательной при малых d t {\displaystyle dt\ } всегда мал, а значит косинус этого угла можно считать равным единице .

    Замечания

    Абсолютная величина тангенциального ускорения зависит только от путевого ускорения, совпадая с его абсолютной величиной, в отличие от абсолютной величины нормального ускорения, которая от путевого ускорения не зависит, зато зависит от путевой скорости.


    Касательное ускорение точки равно первой производной от модуля скорости или второй производной от расстояния по времени. Касательное ускорение обозначается – .

    .

    Касательное ускорение в данной точке направлено по касательной к траектории движения точки; если движение ускоренное, то направление вектора касательного ускорения совпадает с направлением вектора скорости; если движение замедленное – то направление вектора касательного ускорения противоположно направлению вектора скорости. (рис. 8.5.)

    Нормальным ускорением точки называется величина, равная квадрату скорости, деленному на радиус кривизны.

    Вектор нормального ускорения направлен от данной точки к центру кривизны, (рис.8.6.). Нормальное ускорение обозначается .

    – нормаль к данной точке на траектории движения.

    Полное ускорение точки определяется из векторного уравнения:

    Зная направление и модули и , по правилу параллелограмма определим ускорение, соответствующее данной точке траектории движения. Тогда модуль ускорения определим:

    .

    Характер - это такое исполнение движений, при котором у наблюдающих остается впечатление о легкости или грузности, округлости или угловатости, силе или расслабленности, свободе или скованности движений и т. п. Все эти оттенки создаются благодаря своеобразному подбору движений, осуществляющих действие

    8.поступательное движения твердого тела. траектория, скорости и ускорения точек твердого тела при поступательном движении .

    Поступательным движением твердого тела называется такое движение, при котором отрезок прямой, соединяющий две любые точки тела, во все время движения остается себе параллельным (например, АВ ).

    Теорема. При поступательном движении твердого тела траектории, скорости и ускорения всех его точек одинаковы .

    Доказательство . Пусть отрезок АВ тела за время перемещается поступательно. Возьмем произвольную точку O и определим в пространстве положение отрезка АВ радиусами-векторами и. Обозначим: – радиус-вектор, определяющий положение точки В относительно точки А :

    Вектор не изменяется ни по величине, ни по направлению, так как (по определению поступательного движения). Из соотношения (1) видно, что траектория точки В получается из траектории точки А параллельным смещением точек этой траектории на постоянный вектор. Таким образом, траектории точек А и В будут одинаковыми.

    Возьмем производную по времени от равенства (1). Тогда

    Следовательно, при поступательном движении твердого тела скорости и ускорения всех его точек в данный момент времени одинаковы.

    Отметим, что сам факт поступательного движения не определяет ни закона движения, ни вида траектории. При поступательном движении точки тела могут описывать любые траектории (например, окружности ). Но все они будут одинаковы .

    Дифференцируя левую и правую части приведенного выше векторного соотношения и учитывая, что dAB/dt=0, получаем drB/dt =drA/dt, или VB = VA. Дифференцируя по времени левую и правую части полученного соотношения для скоростей, находим dVB/dt=dVA/dt, или аB = аА. На основании вышеизложенного можно сделать следующий вывод: чтобы задать движение и определить кинематические характеристики тела, совершающего поступательное движение, достаточно задать движение одной его любой точки (по-
    люса) и найти ее кинематические характеристики.

    Как и материальная точка, тело при его поступательном движении будет иметь одну степень свободы при движении по направляющей, задающей траекторию его точкам; две степени свободы в случае движения на плоскости (при постоянном контакте с ней хотя бы одной точкой) и три степени свободы в общем случае движения в пространстве.

    9. вращения твердого тела вокруг неподвижной оси. Задания движения, угловая скорость и угловая ускорение, скорость и ускорения точек тела .