Трофимова        20.01.2024   

«анатомия глобальных технологических революций» в.в. овчинников

Технологическая революция – это качественные изменения технологических способов производства, сущность которых состоит в коренном перераспределении основных техноло­гических форм между человеческими и техническими компонентами производительных сил общества.

Технологические революции стали возможными с появлением машин – технических объектов, способных самостоятельно выполнять технологические формы полу­чения, преобразования, транспортиров­ки и хранения (накопления) различ­ных форм вещества, энергии и инфор­мации.

В общественном производстве произошли три технологические революции .

Первая технологическая революция была обусловлена передачей машине техно­логических функций формообразования ве­щественно-материальных предметов и возникла в недрах мануфактур и фаб­рик (конец XVII-нач. XVIII вв.). Мас­совое использование машин в тек­стильном производстве (чесальных, прядильных, ткацких и др.), металло­обработке (ковочных, прокатных, ме­таллорежущих и др.), бумагодела­тельной, пищевой (машины по пере­работке сырья) и других отраслях привело к первой промышленной революции. Коли­чественные изменения (увеличение размеров машин, одновременное ис­пользование нескольких орудий и ин­струментов, объединение нескольких машин в системы и т.п.) привели к проблеме создания универсального ис­точника энергии.

Вторая технологическая революция – энер­гетическая – была связана с осущест­влением машинного способа генера­ции и трансформации энергии , ее на­чалом стало изобретение универсаль­ного парового двигателя (вторая по­ловина XVIII в.). Энергетическая технологическая революция привела ко второй промышленной революции, распространилась на транспорт, сель­ское хозяйство и др. отрасли матери­ального производства.

Современная или третья технологическая революция (вторая половина XX в.) по своей сути является информационно-тех­нологической . Она подчиняет себе все общественное производство, детерми­нирует революции в системе техники в целом и в различных её отраслях. Компьютеризация и роботизация за­вершают предыдущие технологические революции и связыва­ют их в единое целое. По сути информационно-технологическая революция – это революция в области компьютерных технологий.

Компьютерная революция – это радикальные изменения во всех сферах (материальных и духовных) человеческой деятельности, обусловленные созданием и широкомасштаб­ным использованием современной вычислительной техники, в рамках которой постепенно стираются грани между научным и техническим уровнем познания.

В основе «компьютерной рево­люции» лежит возникновение и развитие кибернетики – науки об управлении и связи между объектами и системами различного уровня и качества, основателем которой является американский ученый Н. Винер. В книге «Кибернетика, или Управление и связь в животном и машине» (1948) он обосновывает возможность количественного под­хода к сигналу (информации), когда информация пред­стала в качестве одной из фундаментальных характеристик материальных объектов (наряду с веществом и энергией) и рассматривалась как феномен, противоположный по своей сути (знаку) энтропии. Этот подход позволил пред­ставить кибернетику как теорию преодоления тенденции ро­ста энтропии.

С середины XX в. формируется структура кибернетики, куда входят:

а) математические основания (теория алгорит­мов, теория игр, математическое программирование и др.);

б) отраслевые направления (экономическая кибернетика, био­логическая кибернетика и др.);

в) конкретно-технические дисциплины (теория цифровых ЭВМ, основы автоматичес­ких систем управления, основы робототехники и др.).

Кибернетика – междисциплинарная наука на стыке ес­тественных, технических и гуманитарных наук, для которой характерен специфический метод исследований объекта (или процесса), а именно: моделирование на ЭВМ. Кибернетика – дисциплина общенаучного характера.

Техническая кибернетика – одно из наиболее развитых отраслевых направлений кибернетики, куда входят теория автоматического управления, ин­форматизация и др. Техническая кибернетика – общетеоретическая основа для группы дисциплин, изучающих информационную функцию техники. В процессе развития кибернетики возникла проблема ис­кусственного интеллекта – выявление возможностей со­здания с помощью современных ЭВМ сравнительно самосто­ятельно мыслящих технических систем, которые должны не только оперировать полученной информацией, но осуществ­лять общение с человеком-оператором на естественном язы­ке.

Выделяются следующие точки зрения на проблему имитационного моделирования (искусственного интеллекта):

1) оптимисты – ЭВМ обладает практи­чески неограниченными возможностями при моделировании мыслительных процессов и любые формы человеческой деятельности, вклю­чая творческие процессы, поддаются технической имитации;

2) пессимисты – скептически подходят к самой возможности реализации идеи полной имитации естествен­ных процессов техническими средствами;

3) реалисты – пытаясь примирить полярные воззрения, полагают, что в поведении и мышлении человека можно найти такие элементы и процессы, которые могут быть имитированы с помощью технических и программных средств.

Компьютерная революция – это научно-техническая основа информационного общества , для которого характерны:

– предельное увеличение скорости передачи информа­ции, сравнимой со скоростью света;

– минимизация (и миниатюризация) технических систем, обладающих значительной эффективностью;

– новая форма передачи информации, основанная на прин­ципе цифрового кодирования;

– распространение программного обеспечения, создав­шее предпосылки для свободного использования персональ­ных компьютеров во всех сферах деятельности.

Если НТР являлась научно-технической основой современ­ного индустриального общества , то компьютерная револю­ция обеспечила становление постиндустриального общества или техногенной цивилизации (буквально – цивилизация, порожденная техникой), которые характеризуются:

– доминированием не количественных (экономический рост), а качественных показателей развития социума (динамика здра­воохранения, образования, социальной политики и т. п.);

– реализацией экологической политики, обеспечивающей не только удовлетворение рациональных потребностей со­циума, но и сохранение равновесия исторически сложивших­ся экосистем (стратегия устойчивого развития);

– экспансией глобализации при стремлении к сохранению национальной идентичности на государственном уровне.

Переход к техногенной цивилизации связан с техногенным изменением человека, которое можно рассматривать как совокупность непосредственно воздействующих на природу человека факторов, обусловленных развитием техники и технологии:

– резкое возрастание сложности, скорости и интенсивности производственных процессов сочетается с колоссальными требованиями к интеллекту, психическому здоровью и моральным качествам личности;

– опосредованно влияют на все аспекты человеческого бытия антропогенные изменения окружающей среды (загрязнение и перестройка которой наряду с другими возмущениями экосистем биосферы создают реальную угрозу существованию homo sapiens);

– тенденция денатурализации, т.е. утраты человеком устойчивых качеств своего естества как биологического организма, жизнь которого всё труднее поддерживать на оптимальном уровне, даже достаточном для простого воспроизводства себе подобных (это обстоятельство позволяет некоторым исследователям предполагать возможность пост-человеческой стадии эволюции).

Сельское хозяйство будущего не потребует пестицидов

Экспертное сообщество всё отчетливее осознаёт, что дальнейшее развитие цивилизации по исторически сложившемуся пути невозможно, так как ныне появились новые глобальные проблемы, угрожающие существованию этой цивилизации. Впервые в истории человечества сдвинулись со стационарных уровней важнейшие показатели состояния биосферы.

К таким показателям можно отнести: резкое ухудшение качества воздуха и воды; глобальное потепление; истощение озонового слоя; уменьшение биоразнообразия; достижение предела пищевых, сырьевых и энергетических возможностей биосферы; утрату нравственных ориентиров значительной частью человеческого сообщества (так называемый «феномен аморального большинства»).

Памятник нашему поколению будет выглядеть, видимо, так: посреди огромного шламового отвала стоит величественная бронзовая фигура в противогазе, а внизу на гранитном постаменте надпись: «Мы победили природу!».

Первая промышленная революция на базе угля и Вторая промышленная революция на базе нефти и газа фундаментально изменили жизнь и труд человечества и преобразили облик планеты. Однако эти две революции привели человечество к пределу развития. Среди главных вызовов, которые брошены человечеству — проблемы экологии (см. выше), истощение биоресурсов и традиционных источников энергии. И на эти вызовы человечество должно ответить ТРЕТЬЕЙ ПРОМЫШЛЕННОЙ РЕВОЛЮЦИЕЙ.

«Третья промышленная революция» (ThirdIndustrialRevolution — TIR) — это концепт развития человечества, автором которого является американский ученый — экономист и эколог — Джереми Рифкин(JeremyRifkin). Вот основные положения концепции TIR:

1) Переход на возобновляемые источники энергии (солнце, ветер, водные потоки, геотермальные источники).

Хотя «зеленая» энергия все еще не заняла в мире большой сегмент (не больше 3-4%), инвестиции в неё растут огромными темпами. Так, в 2008 г. было потрачено $155 миллиардов на выполнение «зеленых» энергетических проектов ($52 миллиарда - энергия ветра, $34 миллиарда - солнечная энергия, $17 миллиардов - биотопливо и др.), и впервые это были больше, чем инвестиции в ископаемое топливо.

Только за последние три года (2009-2011) суммарная мощность установленных в мире солнечных станций утроилась (с 13,6 ГВт до 36,3 ГВт). Если же говорить обо всех ВИЭ (ветровая, солнечная, геотермальная и морская энергетика, биоэнергетика и малая гидроэнергетика), то установленная мощность электростанций в мире, использующих ВИЭ, уже в 2010 г. превысила мощность всех АЭС и составила около 400 ГВт.

На конец 2011 г. цена в Европе одного кВт-ч «зеленой» энергии для потребителей составляла: гидроэнергии - 5 евроцентов, ветровой - 10 евроцентов, солнечной - 20 евроцентов (для сравнения: обычной тепловой - 6 евроцентов). Однако ожидаемые научно-технологические прорывы в солнечной энергетике позволят к 2020 г. получить резкое падение цен на солнечные панели и снизить цену «под ключ» 1-го ватта солнечной мощности с $2,5 до $0,8-1, что позволит генерировать «зеленую» электроэнергию по цене меньшей, чем от самых дешевых сейчас угольных ТЭС.

2) Превращение существующих и новых зданий (как промышленных, так и жилых) в минизаводы по производству энергии (за счет оборудования их солнечными батареями, мини-ветряками, теплонасосами). Например, в Евросоюзе имеется 190 млн. зданий. Каждое из них может стать маленькой электростанцией, черпающей энергию из крыш, стен, теплых вентиляционных и канализационных потоков, мусора. Необходимо постепенно распрощаться с крупными поставщиками энергии, порожденными Второй промышленной революцией — основанных на угле, газе, нефти, уране. Третья промреволюция — это мириады малых источников энергии от ветра, солнца, воды, геотермии, тепловых насосов, биомассы, включая твердые бытовые и «канализационные» городские отходы и др.

3) Развитие и внедрение технологий энерго-ресурсо-сбережения (как производственного, так и «домашнего») — полная утилизация остаточных потоков и потерь электроэнергии, пара, воды, любого тепла, полная утилизация промышленных и бытовых отходов и др.

4) Перевод всего автомобильного (легкового и грузового) и всего общественного транспорта на электротягу на основе водородной энергетики (плюс развитие новых экономичных видов грузового транспорта таких как дирижабли, подземный пневмотранспорт и др.).

В настоящее время в мире эксплуатируется свыше одного миллиарда ДВС — двигателей внутреннего сгорания (легковые и грузовые автомобили, тракторы, сельхоз- и строительная техника, военная техника, корабли, авиация и др.), которые ежегодно сжигают около полутора миллиардов тонн моторного топлива (бензина, авиакеросина, дизтоплива) и оказывая угнетающее действие на окружающую природную среду.

По данным InternationalEnergyAgency, более половины потребляемой в мире нефти идет на нужды транспорта. В США на транспорт приходится около 70% всей потребляемой нефти, в Европе — 52%; неудивительно, что 65% нефти потребляется в крупных городах (в сумме — 30 млн баррелей нефти в день!).

Вольфганг Шрайберг, один из руководителей Volkswagen, привел интересную статистику: бо льшая часть городского коммерческого транспорта в большинстве стран проезжает за день не более 50 км, а средняя скорость движения этих автомобилей — 5-10 км/час; однако с такими мизерными показателями эти автомобили потребляют в среднем литров моторного топлива на 100 км! Бо льшая часть этого топлива сгорает на светофорах, в пробках или при мелкой погрузке-разгрузке (или на остановках - для общественного транспорта) с невыключенным мотором.

NationalRenewableEnergyLaboratory (США) в своих расчётах использовала среднюю дальность пробега легкового автомобиля 12000 миль в год (19200 км), потребление водорода — 1 кг на пробег 60 миль (96 км). Т.е. одному легковому автомобилю в год требуется 200 кг водорода, или 0,55 кг в день.

Недавно «водородомобиль» Ливерморской национальной лаборатории (LLNL) Министерства энергетики США прошел 1046 километров на одной водородной заправке.

Средний кпд ДВС невысок - в среднем 25%, т.е. при сжигании 10 л бензина 7,5 л уходит «в трубу». Средний кпд электропривода - 75%, втрое выше (а термодинамическое кпд топливного элемента - около 90%); выхлопы водородомобиля -только Н 2 О.

Важно отметить, что если для движения традиционного автомобиля необходима нефть (бензин, дизель), которая есть далеко не у каждой страны, то водород получают из воды (даже морской) с помощью электроэнергии, которую, в отличие от нефти, можно получать из различных источников - уголь, газ, уран, водные потоки, солнце, ветер и др., и у любой страны что-то из этого «набора» обязательно имеется.

5) Переход от промышленного к локальному и даже «домашнему» производству большинства бытовых товаров благодаря развитию технологии 3 D -принтеров.

3D-принтер — устройство, использующее метод послойного создания физического объекта на основе виртуальной 3D-модели. В отличие от обычных принтеров, 3D-принтеры печатают не фотографии и тексты, а «вещи» — промышленные и бытовые товары. В остальном они очень похожи. Как и в обычных принтерах, применяются две технологии формирования слоёв - лазерная и струйная. У 3D-принтера тоже есть «печатающая» головка и «чернила» (точнее, заменяющий их рабочий материал). Фактически, 3D-принтеры — это те же специализированные промышленные станки с числовым программным управлением, но на абсолютно новой научно-технической базе XXI века.

6) Переход от металлургии к композитным материалам (особенно нано-материалам) на основе углерода, а также замена металлургии на технологию 3 D -печати на основе селективной лазерной плавки (SLM - Selective Laser Melting ).

Например, новейший американский «Boeing-787-Dreamliner» — первый в мире самолет, изготовленный на 50% из композитных материалов на основе углерода. В новом авиалайнере из композитных полимеров изготовлены в том числе крылья и фюзеляж. Широкое использование углепластика по сравнению с традиционным алюминием позволило значительно уменьшить вес самолета и сократить использование топлива на 20% без потерь в скорости

Американо-израильская компания «ApNano» создала наноматериалы — «неорганические фуллерены» (inorganicfullerene — IF), которые многократно прочнее и легче стали. Так, в опытах образцы IF на основе сульфида вольфрама останавливали стальные снаряды, летящие на скорости 1,5 км/сек, а также выдерживали статическую нагрузку в 350 тонн/кв.см. Эти материалы могут быть использованы для создания корпусов ракет, самолетов, морских судов и морских субмарин, небоскребов, автомобилей, бронемашин и в других целях.

NASA решила использовать технологию 3D-печати на основе селективной лазерной плавки как замену металлургии. Недавно сложную деталь для космической ракеты сделали с помощью лазерной трехмерной печати, в процессе которой лазер сплавляет металлическую пыль в деталь любой формы — без единого шва или винтового соединения. Изготовление сложнейших деталей по технологии SLM с применением 3D-принтеров занимает считанные дни вместо месяцев, кроме того, SLM-технологии делают производство на 35-55% дешевле.

7) Отказ от животноводства, переход к производству «искусственного мяса» из животных клеток с использованием 3 D -биопринтеров;

Американская компания ModernMeadow изобрела технологию «индустриального» изготовления мяса животных и натуральной кожи. Процесс создания таких мяса и кожи будет включать в себя несколько этапов. Сначала учёные отбирают миллионы клеток у животных-доноров. Это может быть как скот, так и экзотические виды, которых часто убивают только ради их кожи. Затем эти клетки будут размножены в биореакторах. На следующем этапе клетки будут центрифугироваться для удаления питательной жидкости и соединения их в единую массу, которая затем при помощи 3D-биопринтера будет сформирована в слои. Эти пласты клеток будут снова помещены в биореактор, где произойдёт их «созревание». Клетки кожи сформируют коллагеновые волокна, а клетки «мяса» образуют настоящую мышечную ткань. Этот процесс займёт несколько недель, после чего мышечная и жировая ткань может быть использована для производства пищевых продуктов, а кожа - для обуви, одежды, сумок. Для получения мяса в 3D-биопринтере энергии потребуется втрое меньше, а воды - в 10 раз меньше, чем на производство того же количества свинины, а особенно говядины обычными способами, а выбросы парниковых газов снижаются в 20 раз по сравнению с выбросами при выращивании скота на убой (ведь в настоящее время для производства 15 г животного протеина нужно скормить скоту 100 г растительного протеина, таким образом, кпд традиционного метода получения мяса составляет лишь 15%). Искусственный «мясозавод» требует намного меньше земли (займет всего 1% земли по сравнению с обычной фермой той же производительности по мясу). Кроме того, из пробирки в стерильных лабораторных можно получить экологически чистый продукт, без всяких токсичных металлов, глистов, лямблий и прочих «прелестей», часто присутствующих в сыром мясе. К тому же, искусственно выращенное мясо не нарушает этических норм: не надо будет выращивать скот, а затем безжалостно его умерщвлять.

8) Перевод части сельского хозяйства в города на базе технологии «вертикальных ферм» (Vertical Farm ).

Откуда взять на все это деньги, коль скоро и Европа, и Америка тонут в долгах? Но ведь везде ежегодно закладывается бюджет развития — каждая страна и почти каждый город планируют его. Важно делать капиталовложения в то, у чего есть будущее, а не в поддержание жизни таких инфраструктур, технологий, отраслей или систем, которые обречены на вымирание.

Хочется выразить надежду, что «всемирная TIR» случится гораздо раньше того момента, когда человечество исчерпает все имеющиеся в природе запасы угля, нефти, газа и урана, а заодно окончательно загубит окружающую природную среду.

В конце концов, каменный век закончился вовсе не потому, что на Земле закончились камни…

Михаил Краснянский

Джереми Рифкин. Третья промышленная революция: Как горизонтальные взаимодействия меняют энергетику, экономику и мир в целом /

; Пер. с англ. - М.: Альпина нон-фикшн, 2014. - 410 с. Переводчик Вячеслав Ионов, руководитель проекта в издательсве - М.Серегина.

После « Третьей волны» Элвина Тоффлера, отгремевшей в 90-х годах прошлого века, сегодня набирает силу голос идеолога третьей промышленной революции Джереми Рификна. Его книга, написанная в 2011 - вскоре после завершения первого глобального экономического кризиса 2008 года, наконец-то вышла на русском - чтобы сообщить нам новости, о которых мы давно знали, но не хотели принимать всерьез (надо сказать, что в 2011 году выход книги был аннонсирован в нашей печатной версии - журнале “Экология и жизнь»).

Мы - в перекрестье прицела, образованного трендами развития энергетики и информатики. И выпрыгнуть из прицела нам не дано - это системная связка экономического роста и роста потребностей, такая же неразрывная, как связка языка и людей, которые на нем разговаривают. Это перекрестье характерно напоминает « крест Маршалла» - пересечение кривых спроса и предложения в экономике и наводит на размышления о том, что же является основой экономики? Автор и сам « подливает масла в огонь», рассуждая о роли энергии в экономике: « При анализе фактического экономического роста США и дру гих промышленно развитых стран оказывается, что капитал, инвестированный в расчете на одного работника, обеспечива ет всего лишь около 14% роста, а остальные 86% роста не име ют объяснения. Роберт Солоу, получивший Нобелевскую пре мию за свою теорию экономического роста, прямо говорит, что оставшиеся 86% - это « показатель нашего невежества“». Что такое эти 86% - информация, скрытая в молчащем экономическом « геноме» или что-то еще? Рифкин пишет о модели, которую разработал Райнер Кюммель из Вюрцбургского университета (Германия), учитывающую энергию помимо капита ла и труда. Модель Кюммеля протестированная на данных о росте в США, Вели кобритании и Германии в период с 1945 по 2000 г. показывает, что энергия может быть « недостающим фактором», кото рый обеспечивает оставшуюся часть производительности и эко номического роста.

Рифкин отмечает важную объективную закономерность - если в течении всей истории человечества его « энерговооруженность» - валовое количество добываемой энергии все время росло, причем не только в абсолютном, но и в удельном (на душу населения) выражении, то начиная с середины 70-х годов прошлого века количество добываемой энергии в расчете на человека падает, тогда как количество информации продолжает неуклонно расти.

Предлагаем вместе с нами пролистать книгу Рифкина - мы « надергали» отдельные « листочки из книги» чтобы можно было представить себе о чем идет речь:

:

Если же излагать более или менее последовательно, то Рифкин полагает, что изменение соотношения энергии и информации характеризует новое состояние развития общества, которое он назвал третьей промышленной революцией. Однако Рифкин - не теоретик, а скорее - идеолог, поэтому его описания делаются крупными взмахами, крупными мазками. Он не вдается в подробные описания действующих механизмов связи энергии и информации - это предмет изучения и дискуссии, но отмечает - сам факт такой связи. Промышленную революцию, начавшуюся в 17 веке с изобретения паровой машины он классифицирует как первую промышленную. Толчком стало появление парового двигателя* и развитие угольных шахт в сочетании с линотипом и зарождением периодической печати. »Использование энергии пара в типографском деле превратило печатные средства массовой информации в основной коммуникационный инструмент управления первой промышленной революцией. Паровая печатная машина с валиками, а позднее ротационная печатная машина и линотип колоссально повысили скорость и значительно снизили стоимость печати. Печатная продукция в форме газет, журналов и книг распространилась по Америке и Европе, а вместе с нею впервые в истории появился стимул к массовой грамотности. Создание бесплатных государственных школ на обоих континентах в период между1830-ми и 1890-ми гг. привело к появлению грамотной рабочей силы, сложных фабричных производств, железнодорожного транспорта» - это было первое перерождение экономики - эпоха « угля и пара».

* Первая паровая машина построена в XVII в. Папеном и представляла цилиндр с поршнем, который поднимался действием пара, а опускался давлением атмосферы после сгущения отработавшего пара. На этом же принципе были построены в 1705 году паровые машины Севери и Ньюкомена для выкачивания воды из копей. Окончательные усовершенствования в паровой машине были сделаны Джеймсом Уаттом в 1769 году.

« Третья промышленная революция будет означать для XXI века то же самое, что первая промышленная революция означала для XIX века, а вторая промышленная революция -для XX века» - пишет Рифкин. « В первом десятилетии XX века появление электрических средств коммуникации совпало с широким внедрением двигателя внутреннего сгорания и дало начало второй промышленной революции.

Ясно, что анализ Рифкина идет в “тренде» идей Белла, провозгласившего начало эры информационного общества, в котором производство информационных сервисов и услуг превзойтет материальное производство. В этом же « тренде» - Маршалл Маклюэн с его « Галактикой Гуттенберга», утверждавший что развитие книгопечтатания и электронных средств массовой информации - это этапы изменнения важнейших пропорций, составляющих жизнь общества**.

**Интересно, что по мнению Мак-Люэна письменность является основной технологией, которая лежит в основе всех остальных человеческих технологий и форм общения, может быть и того, механизма, который лежит в основе сознания человека: « …Письмо раскалывает аудиотактильное единство сознания племенного человека и выдвигает на первый план визуальную составляющую человеческой чувственности (происходит изменение пропорций чувств!)…- пишет Маклюэн. И тут же задается вопросом - „Какими же будут новые конфигурации механизмов чувств и письменности по мере того, как старые формы восприятия и мышления будут модифицироваться в новый электрический век?“ Возможно это тот же самый вопрос, на который дает ответ Рифкин?

Однако мы с вами и вместе с Джереми Рифкиным - нашим весьма активным современником, оказались не в электрическом веке, а в веке интернет-технологий, что во много тысяч раз увеличило скорость и объем информации, проходящей через человеческую сеть восприятия. Рифкин концентрирует внимание на новых, горизонтальных связях в обществе, которые не только выстраиваются вдоль мощных « силовых линий» потоков информации, но и в насыщенной информацией среде « пробивают» и устанавливают множественные новые связи, обладающие большой, но распределенной мощностью - подобно тому, как в экономике процесс противостояния вертикальной тенденции институционализации инвесторов, следующих в кильватере более мощных игроков, начинает конкурировать с и не менее мощным трендом роста горизонтальных альтернативных стратегий, называемый инвестиционной розницей – retailization (см. например Будущее альтернативных инвестиций).

Альтернативные стратегии среднего бизнеса в производстве энергии точно также основываются на эффективности использования распределенных потоков энергии - энергии Солнца и ветра, и начинают противопоставлять себя и конкурировать с вертикальными институтами традиционной энергетики, представляющей собой крупный и муниципальный бизнес. Это столкновение крайне интересно раскрывается в опыте Рифина по составления генерального плана для города Сан-Антонио, в штате Техас - бывшей главной нефтяной провинции Америки. В этой истории возникшее противостояние атомных реакторных блоков и ветряных станций привело к интересной коллизии в которой отчисления на « возобновляемые» изменения находились в пределах 5% от общего плана финансирования, - « направленного на поддержание инфраструктуры второй промышленной революции». Характерно, что такая же 5-ти процентная доля возобновляемой энергии изначально считалась в энергетике « устойчивой» с точки зрения сдачи возобновляемой энергии в сеть. При этом стоимость атомных реакторов из-за требований безопасности только растет, тогда как стоимость возобновляемых источников - падает, стремясь к паритету, что в итоге привело к скандальной отставке команды мэра и победе ветряных мельниц - совершенно в духе идальго Дон-Кихота!

При рассмотрении практических решений и главных тенденций TIR - третьей промышленной революции (см например ) - Рифкин использует пять « возобновляемых» элементов третьей промышленной революции -

1. Переход на возобновляемые источники энергии. 2. Превращение зданий в экологически чистые микроэлектростанции для получения энергии из возобновляемых источников прямо в месте потребления. 3. Оснащение зданий накопителями для энергии, поступающей из периодически действующих источников. 4. Превращение энергосети в « энергетический Интернет». 5. Перевод транспорта на электрическую тягу, с использованием аккумуляторов и топливных элементов.

В общем - грядет полное переосмысление современной техники. В этом - интересный аспект рассуждений Рифкина относительно нашего обращения с энтропией - если при сжигании топлива мы увеличиваем энтропию окружающей среды, то при сборе возобновляемой энергии мы действуем так же, как и все организмы в природе, которые собирают и накапливают отрицательную энтропию (негэнтропию), поддерживая уровень высокой организации и низкой энтропии в течении времени своей жизни. Время жизни при этом - важнейший ресурс любого организма.

« Более того - зарождающаяся энергокоммуникационная инфраструктура третьей промышленной революции меняет наш подход к оценке экономического успеха»-, пишет Рифкин, отмечая переход от экономики собственности (отношений покупатель продавец), к экономике временного доступа (производитель-арендатор), когда владение любым товаром - недвижимостью или автомобилем, не прерывается на всем жизненном цикле изделия, - « Время становится важнейшим товаром!»

В его книге - новости, о которых мы знали, но не хотели принимать всерьез. Это новости о том, что мир в очередной раз меняется, и мы должны как минимум осознать это изменение, принять новое видение ситуации, в которой мы находимся - и начать действовать!

Рифкин - американец, уехавший в Европу, что бы уйти от бесконечного прагматизма своих соотечественников: « Чувствуя себя в какой-то мере чужим в собственной стране,я решил не следовать мудрому совету Хораса Грили *, которыйон давал каждому недовольному положением дел еще в 1850 г.:“Поезжайте на Запад, молодой человек, поезжайте на Запад»,и отправился в противоположном направлении - через океан в старую Европу, где новые идеи относительно будущего человечества воспринимались всерьез. Итак он направился к более цивилизованным и сознательным европейцам - и там на семинарах с главами крупных компаний и обедах с членами Евпропарламента и главами правительств (прежде всего с Ангелой Мергель) он оттачивает свои идеи. Книга, содержит своеобразные дневники встреч с ответами на часто встречающиеся вопросы - своеобразным FAQ для скептиков, отрицающих значение энерго-информационного перелома, который Рифкин не только видит и чувствует, но и несет в жизнь - объясняя на встречах с политиками и бизнесменами свое видение назревающих трансформаций. Но он не одиночка - в одиночку невозможно осущетсвлять сколько-нибудь масштабные преобразования, реализовывать проектирование новых планов городов и инфраструктуры, связывающей между собой регионы Европы. В ходе обмена мнениями удалось договориться о создании сети, которая сможет работать с правительствами, местными компаниями и организациями гражданского общества над переходом глобальной экономики в постуглеродную эру распределенного генерирования энергии. Возниклшая при этом группа экономического развития, в которую вошли среди прочих Philips, Schneider Electric, IBM, Cisco Systems, Acciona, CH2M Hill, Arup, Adrian Smith + Gordon Gill Architecture и Q-Cells, является крупнейшей в своем роде в мире и занимается на уровне городов, регионов и государств разработкой генеральных планов создания инфраструктуры третьей промышленной революции» - пишет Рифкин, - настаивая на том, « что только Европейский союз задается серьезнейшим вопросом о нашем выживании на Земле как вида».

Рифкин отлично раскрывает близорукость сторонников чисто нефтяного развития и “американский подход к делу“, описывая возможности взаимодействия США и Европы:» Можем ли мы, американцы, почерпнуть что-либо в Европе? Я уверен, что можем. Нам нужно для начала прислушаться к тому, что наши европейские друзья говорят, и присмотреться к тому, что они пытаются делать. Европейцы как минимум подошли к пониманию того, что эра ископаемого топлива заканчивается, и начали прокладывать курс к зеленому будущему. Американцы, к сожалению, в большинстве своем не верят и не желают признавать, что экономическая система, так хорошо функционировавшая в прошлом, сейчас держится на аппарате искусственного дыхания. Как и Европе, нам нужно признать свою ошибку и раскошелиться. А что мы можем дать со своей стороны? Хотя Европа предложила очень убедительный сюжет, никто не умеет рассказывать истории лучше Америки. Мэдисон-авеню*, Голливуд и Кремниевая долина превзошли всех в этом деле. Америку отличает не столько деловая хватка, сколько уникальная способность преподносить будущее так живо и ясно, что людям кажется, будто они уже приехали, еще до того, как поезд отойдет от станции. Если американцы проникнутся идеей третьей промышленной революции, они могут быстрее других превратить эту мечту в реальность». Возможно в этой картинке - причина того, что Рифкин почти не упоминет имени губернатора Шварцнеггера, громко заявлявшего о своих « зеленых» инициативах и « водородной эконоке». Однако в действительности американского подхода Рифкину не занимать, но самое удивительное, что поезд уже едет - трудно этого не видеть, когда не только Европа, но Китай, Индия и даже Монголия (см. ) уже прирастают не только планами, но реальными десятками гигаватт солнечной и ветровой энергетики.

Мы в России, где глобальное потепление - (согласно официальным данным Росгидромета! - см. ) идет быстрее, чем во всем остальном мире, больше всех упорствуем в том, чтобы признать глобальное потепление неотвратимым и опасным фактом. Возможно эта « борьба» с глобальным потеплением - « последний редут» признания того, что несмотря на гигантские разведанные запасы нефти и газа, эра нефтяной энергетики быстро сворачивается. И хотя можно « проталкивать“ в будущее стремительно устаревающие проекты энергетики основанной на сжигании ископаемого топлива, и нужно поддерживать инфраструктуру, созданную в рамках парадигмы эпохи нефти и газа для второй промышленной революции, но надо понимать, что прогресс нельзя остановить - и диверсификация - действительное требование времени, лишь озвученное с высоких трибун. Виктор Гюго, живший в эпоху французской революции написал - “ Ни одна армия не может противостоять силе идеи, время которой пришло». По всей видимости это во многом справедливо для идей, о которых пишет Рифкин.

Однако это вовсе не означает, полного согласия с ним - наоборот, есть много спорных тем, которые внутри его же концепции могут придать совершенно иные акценты конкретным решениям. Такова, например, идея использования водорода, как универсального « накопителя» энергии. Дело в том, что разлагать воду электролизом, чтобы потом соединить обратно водород и кислород - процесс, заведомо имеющий отрицательный КПД, но очень высокий уровень опасности при хранении и транспортировке компонентов. Это многократно удорожает инфраструктуру « водородной экономики», о которой одно время много писали, но теперь – главным образом речь идет о ее использовании в космосе. Наверняка в этой части можно и оспорить и предложить альтернативу решениям, о которых пишет Рифкин. Точно так же далеко не бесспорны и другие конкретные решения. Более того - вне поля зрения в книге Рифкина (возможно потому, что ее выход пришелся на уже далекий 2011) - революции в материаловедении и информационных технологиях, связанные с наступлением эры компьютерного проектирования свойств наноматериалов, и наиболее грандиозного по масштабам перехода от эры традиционных вычислений к квантовому компьютеру. Именно квантовый компьютер может коренным образом изменить саму суть энергетики - если сегодня это просто « продажа электронов табунами», то квантовые технологии, основанные на технологиях одноэлектроники и однофотоники, могут позволить передавать информацию вместе с квантовыми частицами, а потоки энергии будут переносить вместе с собой и информацию.

В тоже время принципы трансформаций промышленности, общества и сознания отдельного человека, возникающих в перекрестии потоков энергии и информации и направления потоков движения энергии и информации в целом отмечены автором бесспорно верно и убедительно, и эту новую реальность нам еще предстоит осознать и применить - дома, в России!

Каждый руководитель государства - будь он демократ, автократ или даже диктатор (кроме самых тупых и обезумевших правителей) - всегда или хоть иногда спрашивает себя: куда движется моя страна? Куда движется человеческий прогресс? В одну ли сторону наше движение? А вот интересно - в Кремле кто-нибудь кому-нибудь задает подобные вопросы?...
Первая промышленная революция на базе угля и Вторая промышленная революция на базе нефти и газа фундаментально изменили жизнь и труд человечества и преобразили облик планеты. Однако эти две революции привели человечество к пределу развития. Впервые в истории человечества «поплыли», т.е. сдвинулись со стационарных уровней, важнейшие показатели состояния биосферы. К таким показателям можно отнести: резкое ухудшение качества воздуха, воды, продуктов питания, здоровья населения и защиты его от инфекций; глобальное потепление; уменьшение биоразнообразия; достижение предела водных, пищевых, сырьевых и энергетических возможностей биосферы; утрату нравственных ориентиров значительной частью человеческого сообщества (так называемый «феномен аморального большинства»). Памятник нашему поколению будет выглядеть, видимо, так: посреди огромного шламового отвала стоит величественная бронзовая фигура в противогазе, а внизу на гранитном постаменте надпись: «Мы победили природу!» . Пророчески звучат слова М. Лермонтова:
И прах наш, с строгостью судьи и гражданина,
Потомок оскорбит презрительным стихом,
Насмешкой горькою обманутого сына
Над промотавшимся отцом.

И на эти вызовы человечество отвечает Третьей Промышленной Революцией.
«Третья промышленная революция» (Third Industrial Revolution - TIR ) - это концепт развития человечества, авторами которого являются американцы: ученый-экономист и эколог Джереми Рифкин (Jeremy Rifkin) и футуролог Рэймонд Курцвейл (Raymond Kurzweil).Также я позволил себе несколько дополнить и расширить данный концепт, состоящий из 12 пунктов.
1) Переход на возобновляемые источники энергии - солнце, ветер, естественные водные потоки (wws - wind, water, sunlight), геотермальные воды, в отдаленном будущем - высоко- или низкоэнергетический ядерный синтез (Lockheed Martin Corp. недавно заявила, что она добилась технологического прогресса в развитии источника энергии, основанного на ядерном синтезе, и первые реакторы мощностью 100 мегаватт, достаточно маленькие, чтобы помещаться в кузове грузовика, могут пойти в серию через 10 лет). Уже сегодня 20% потребляемой в Германии электроэнергии поступает из возобновляемых источников, а к 2020 г. их доля увеличится до 35%. Доля электроэнергии, выработанной ветряными турбинами в США, составила рекордные 5%. В недавнем отчете Deutsche Bank отмечается, что в Индии, и Италии стоимость несубсидированной солнечной энергии уже равняется стоимости электричества из сети. Кроме того, на газовом рынке, после «сланцевой», грядет еще более радикальная «метангидратная революция». Сейчас общемировые запасы метана в «обычных» месторождениях составляют около 180 триллионов кубических метров (доля России - около 50 трлн). В сланцевых месторождениях хранится еще около 240 трлн кубометров метана. Итого - где-то около 420 трлн кубометров. А вот суммарный объем метана в подводных газогидратах оценивается в 20 тысяч триллионов кубических метров (!), то есть в 50 раз больше уже известных! Этих запасов хватит на несколько столетий самой «зверской» эксплуатации. Огромные запасы метана хранятся в основном на морском дне. Метан находится там в связанном виде - в форме твердых кристаллов состава метан-вода 1:6. В 2013 г. Япония - первая из всех «претендентов» - начала экспериментальную добычу метана по уникальной технологии (JAMSTEC).
2) Превращение существующих и новых зданий (как промышленных, так и жилых) в минизаводы по производству энергии (за счет оборудования их солнечными батареями, мини-ветряками, теплонасосами, утилизаторами тепла и т.д.). Такие дома не будут нуждаться во «внешней» энергии (так наз. «нулевой дом» - «zero house»). Например, в Евросоюзе имеется около 200 млн зданий. Каждое из них может стать маленькой электростанцией, черпающей энергию из крыш, стен, тепла выходящих вентиляционных и канализационных потоков, мусора. Так, исследователи из Лос-Аламосской национальной лаборатории разработали новое поколение люминесцентных солнечных концентраторов (LSC) большой площади на основе синтеза сверхсовременных квантовых точек, которые они смогли внедрить в прозрачный полимер для захвата энергии солнца. LSC особенно привлекательны тем, что в дополнение к повышению эффективности они могут интегрироваться в новые интересные концепты - такие, например, как фотоэлектрические окна, которые могут превратить фасады домов в большой местный генератор энергии. Третья промреволюция для жилых и промышленных помещений - это мириады малых источников энергии от ветра, солнца, воды, геотермии, тепловых насосов, биомассы и т.д. В нескольких странах - Китае, США, ОАЭ - уже спроектировали и начали строить даже «нулевые небоскребы».
3) Развитие и внедрение технологий энерго-ресурсосбережения (как производственного, так и жилого секторов) - полная утилизация остаточных потоков и потерь электроэнергии, пара, газа, воды, любого тепла, пищевых потоков, полная утилизация промышленных и бытовых отходов и др. Так, потери электричества в сетях США составляют в среднем 6,5% (около 250 миллиардов кВт-ч ежегодно); потери электроэнергии в электросетях России составляют в среднем 15% (свыше 100 млрд. кВт ч/год). Полный переход всего освещения на светодиоды («blue», LED-light-emitting diode, SSL-solid-state lighting) -10 млн таких ламп вместо «ламп накаливания» - позволяет заменить один энергоблок АЭС или ГРЭС мощностью 1 МегаВт. Исследование Продовольственной и сельскохозяйственной организации ООН (Foodand Agriculture Organization of the United Nations) показало, что каждый год в мире выбрасывается или теряется 1,3 миллиарда тонн (!) или треть всех производимых для потребления продуктов питания. В развитых странах более 40% потерь приходится на этапы розничной продажи и потребления (т.е. их в буквальном смысле выбрасывают в мусор либо магазины из-за истекшего срока годности, либо потребители из-за того, что попросту не успели их съесть). Например, в США выбрасывается в мусор около 25% всех производимых пищевых продуктов. В размерах страны их экономическая цена составляет свыше 100 миллиардов долл./год, и на их производство расходуется около 300 млн баррелей нефти в год. (Но в развивающихся странах более 50% потерь в пищепроме происходит в результате перевозки, хранения и последующей переработки). Главное, нужно понимать, что затраты на экономию одного мегаватта энергии или одной тонны продуктов питания - в десятки раз меньше, чем для их нового производства и транспортировки!
4) Перевод всего автотранспорта (легкового и грузового) на электротягу (топливные элементы на «связанном» водороде или мощный блок сверхъемких электроаккумуляторов с быстрой перезарядкой; при этом электродвигатель будет встроен прямо в автомобильное колесо). Японская компания Sekisui Chemical представила сверхтонкие и сверхъемкие литий-ионные аккумуляторы; новые батареи обладают в 5 раз более высокой емкостью и в 10 раз снижена их стоимость. В США разработаны «ячеистые» аккумуляторы с анодами из кремний-углеродных нанокомпозитов; их емкость выше в 10-15 раз и они могут выдержать несколько тысяч зарядных циклов. Перевод авиатранспортана «гибридную» тягу (топливо – жидкость или сжиженный газ - плюс блок сверхъемких аккумуляторов), что уменьшит расход топлива и уровень шума авиалайнеров на 50%. Развитие скоростного и сверхскоростного (св. 1000 км/час - в «вакуумной трубе») общественного пассажирского транспорта. Развитие новых экономичных видов грузового транспорта, таких как большие дирижабли (до 200 тонн полезного груза), подземный пневмотранспорт и др. В настоящее время в мире эксплуатируется свыше одного миллиарда ДВС - двигателей внутреннего сгорания. При этом кпд ДВС невысок - в среднем 25%, т.е. при сжигании 10 л бензина используется «по прямому назначению» только 2,5 л. А вот средний кпд электропривода - 75%, втрое выше ДВС, а термодинамический кпд топливного элемента - и вовсе около 90%. Недавно «водородомобиль» Ливерморской национальной лаборатории Министерства энергетики США прошел свыше 1000 километров на одной «водородной заправке» (5 кг).
5) Переход от промышленного к локальному и даже «домашнему» производству большинства бытовых товаров благодаря развитию технологии 3 D -принтеров . В отличие от обычных принтеров, 3D-принтеры печатают не фотографии и тексты, а «вещи» - промышленные товары. Т.е. 3D-принтеры позволяют создавать по введенной в память цифровой трехмерной модели практически всё, что угодно. У 3D-принтера тоже есть картриджи, но не с чернилами, а с заменяющими их рабочими материалами - пластмассовые гранулы, сухие цемент или гипс, металлические порошки и др. По расчетам экономистов из Мичиганского университета, «домашний» 3D-принтер обеспечивает возврат инвестиций от 40% до 200% за год - так что производство бытовых товаров ожидает «3D-революция» (Good bye, «made in China»?). Компания Natural Machinesс 2014 г. начнет производство первого «продовольственного» принтера «Foodini», который ориентирован на коренное реформирование кухонной индустрии. Он возьмет на себя трудоемкую и сложную работу повара и сможет печатать (из натуральных ингредиентов!) практически все твердые продукты: от тортиков и шоколадок причудливой формы до равиоли и проч. Датская компания «DUS Architects» планирует возвести полноразмерный дом, печатая его компоненты на огромном 3D-принтере «KamerMaker» прямо на стройплощадке (3D-принтер KamerMaker отличается внушительными размерами - его высота равна 3,5 метров). Если при этом еще использовать почти безлюдный метод «контурного строительства» (разработка университета Ю. Калифорнии) - дом можно будет построить за 24 часа. Видимо, стройиндустрию также ждет «3D-революция».
Бытовые и несложные технические товары будут отправлять покупателю по-емэйлу – т.е. покупаться будет «программная матрица для 3D-печати» - гаечного ключа, керамической вазы или кожаных перчаток, а сам товар покупатель будет производить на домашнем 3D-принтере. Кстати, именно производство этих самых «программных матриц для 3D-печати» и станет гигантским бизнесом будущего и колыбелью новых миллиардеров.

Откуда взять на всё это деньги, коль скоро и Европа, и Америка, и Япония тонут в долгах? Но ведь везде ежегодно закладывается бюджет развития - каждая страна планирует его. Важно делать капиталовложения в то, у чего есть будущее, а не в поддержание жизни таких инфраструктур, технологий, отраслей или систем, которые обречены на вымирание. Увы, промышленные революции – это не только«путь в светлое будущее». Они становятся причинойобесценивания производственных активов, знаний и опыта людей, и даже банкротства целых государств. Люди и страны, которые были уверены в своем будущем, вдруг обнаруживают, что виды деятельности и продукты, составлявшие важную часть их экономики, оказываются никому не нужными. Это влечет за собой такие печальныеявления, как финансовые кризисы, банкротства, безработица. Поэтому еще одна задача 3-ей Промреволюции - весь освободившийся огромный интеллектуально-трудовой потенциал цивилизации придется перенаправить на освоение космоса – больше некуда.
Собственно говоря, «продвинутая часть» человечества последнее время уже активно движется по этому пути. Хочется выразить надежду, что «всемирная TIR» случится гораздо раньше того момента, когда человечество исчерпает все имеющиеся в природе запасы угля, нефти, газа и урана, а заодно окончательно загубит окружающую природную среду. В конце концов, каменный век закончился вовсе не потому, что на Земле закончились камни…

Около 150 лет назад - прежде всего в экономических исследованиях - был зафиксирован факт существования малых, средних и больших циклов развития. В числе первых, кто отметил феномен волнообразности экономического развития, был малоизвестный английский железнодорожный инженер Гайд Кларк , который исследовал динамику цен, временные интервалы голода, низкой и высокой урожайности и был уверен, что зафиксировал цикличность изменения данных. Г. Кларк считал, что от кризиса до кризиса проходит 54 года.

В дальнейшем, Клемент Жюгляр в 1862 г., исследуя кризисы в Британии, Франции и США, отмечал колебания в уровнях запасов товаров, загрузки производств, объемах инвестиций в основные средства и рассчитал, что среднее значение сроков между кризисами составляет 7-10 лет . Также Джозеф Китчин на материале Великобритании и США зафиксировал малые циклы длительностью 40 месяцев (позже названные его именем) и, вслед за К. Жюгляром, средние циклы длиной 7-11 лет .

М.И. Туган-Барановский пытался дать теоретическое объяснение причин цикличности и 1894 г. писал, что √áэкономическое процветание в основном идет за счет расширения на международных рынках, <которое> связано с увеличением свободной торговли и улучшением транспортной системыƒå . Вслед за ним Якоб ван Гельдерен иСаломон де Вольф в 1910-е годы предположили, что причиной волнообразности экономического развития является технический прогресс . Эту мысль почти одновременно продуктивно развивал русский ученый Константин Кондратьев, на большом эмпирическом материале показав, что смена пакета технологий вызывает цикл экономического развития длинной в 48-60 лет .

Чуть позже Саймон Кузнец в 1930 г. обнаружил волны длительностью 15-25 лет, с его точки зрения, связанные с притоком иммигрантов и периодическим массовым обновлением жилья новым поколением , а Иозеф Шумпетерпродуктивно развил концепцию больших циклов Кондратьева.

В соответствии с упомянутыми выше экономическими представлениями процессы развития неравномерны и неустойчивы: любой процесс может быть описан на основе циклических моделей, он имеет свое начало, фазу подъема, пик и фазу спада. Переход от одного цикла к другому обычно происходит через смену технологий, образа жизни, социальных структур и может быть описан в терминах структурного кризиса.

В последние годы в популярной литературе – в частности, в работах Джереми Рифкина – вновь актуализировалась метафора "третьей промышленной революции" . Согласно этой концепции каждая промышленная революция характеризуется своим типом базового энергоносителя, способом преобразования энергии в механическую, своим типом транспорта и типом связи. Единство названных ключевых моментов промышленно-производственного уклада образует основу длинного экономического цикла, а их смена меняет тип экономики и способ промышленного развития


С этой точки зрения, √áнулеваяƒå промышленная революция в Нидерландах – это торф, ветряные двигатели, каналы и трекварты (каналы, по которым корабли или баржи тянули лошади, идущие по дорогам вдоль канала; поэтому движение по треквартам не зависело от наличия и направления ветра, а баржи между городами ходили по расписанию каждый час от открытия до закрытия городских ворот). По каналам и треквартам транспортировались не только торф, грузы и люди, но и почта; поэтому они также выступали в качестве средства связи. Массовое использование ветряных двигателей выступало не только в качестве источника локальной энергии, но и позволяло осушать большие участки земли, отвоевывая их у болот и моря, создавая так называемые √áпольдерыƒå - новые земли для с/х и промышленного использования.

Первая промышленная революция – это уголь, паровая машина, железная дорога и телеграф. Лидером в ней стала Англия, которая создала новый инфраструктурный пакет, основанный на этих технологиях, и перехватила первенство у Нидерландов. Англия перенесла и за счет становления науки и проектирования (диктующих совершенно новые требования к квалификации человека), а также протекционистской политики усовершенствовала опыт Нидерландов в части судостроения, интенсивного сельского хозяйства, ткачества, на которое в дальнейшем была сделана базовая ставка. В результате около половины продуктов ткачества в 1800 г. экспортировалось на мировой рынок, а продукция Английских предприятий составляла более 60 % мирового рынка. На базе нового инфраструктурного пакета были развернуты горная отрасль и производство кокса, качественных и главное – дешевых чугуна и ковкого железа, точного машиностроения.

Вторая промышленная революция опирается на нефть, двигатель внутреннего сгорания, автомобиль и самолет, электричество, а также связанные с ним виды связи (телефон и радио). Первенство в этой промышленной революции принадлежало Соединенным Штатам. Многие страны начали создавать элементы нового инфраструктурного пакета почти одновременно с США: добывала нефть и экспортировала ее продукты и Россия; ДВС, автомобиль, а затем качественные дороги были созданы в Германии; единая энергосистема была реализована в Японии и Корее. Но США первыми развернули новый инфраструктурный пакет полностью, и это обеспечило им преимущество в развитии. Страна существенно потеснила в ткачестве и экспорте тканей прошлого лидера – Великобританию. В 1920-х годах только корпорация Форда (а были еще и другие) владела ¾ мирового рынка автомобилей, охватывая тридцать шесть стран на трех континентах. Для реализации этих шагов США потребовалось превратить исследования и проектирование, которые ранее осуществились выдающимися одиночками, в профессии, а их организацию – в исследовательско-проектные √áмануфактурыƒå, которые ведут исследования и разработки по многим направлениям и в кооперации между этими направлениями создают элементы нового технологического пакета (понятно, что в этих условиях одними из ключевых компетенций были умение участвовать в исследовательско-проектной кооперации и организовать ее).

Третья промышленная революция, с точки зрения Рифкина – это Интернет в качестве средства связи. Добавим – и совместной работы распределенных по земному шару участников и коллективов. А √áэнергетическая платформаƒå третьей промышленной революции еще не сложилась. Д. Рифкин считает, что эту роль могут выполнить малые возобновляемые источники энергии в домах, офисах и на предприятиях, Smart Greed, которая свяжет этих √áпотребителей-генераторовƒå и решит проблему несинхронизированности выработки и потребления, водородные топливные элементы в качестве аккумуляторов энергии ВИЭ, а также автомобили с аккумуляторной батареей из водородных топливных элементов.

Д. Рифкин утверждает, что причиной сегодняшнего кризиса являются высокие цены на энергоносители, в частности, нефть. Во второй половине XX в. в процессы индустриализации включились Китай, Индия, Бразилия, Мексика и ряд других стран √áтретьего мираƒå. Однако способов осуществлять индустриализацию без увеличения или хотя бы поддержания уровня потребления энергии еще не изобретено. В силу этого энергопотребление возросло – в 1978 г. был достигнут максимальный уровень потребления нефти на душу населения Земли, и с тех пор увеличение добычи нефти происходит медленнее, чем возрастает населения. Когда дефицит энергоносителей привел к росту стоимости барреля нефти до 120-150 долларов, существенная часть потребителей оказалась не готова платить за подорожавшие продукты, и экономический рост затормозился. Финансовый же кризис был лишь последствием приостановки экономического роста и пессимизма потребителей. После 2008 г. было несколько ситуаций, когда мировая экономика начинала √áускорятьсяƒå, нарастало потребление энергоносителей, но экономический рост опять √áупиралсяƒå в возрастание цен – в частности нефти. Поэтому пока не будет осуществлен переход на новые источники энергии, которые обеспечат более дешевой энергией производителей, выхода из экономического кризиса, по мнениюРифкина, не произойдет.

С нашей точки зрения, рост цен на энергоносители – лишь одна из видимых составляющих кризиса. Как показывает опыт трех первых промышленных революций (включаю так называемую "нулевую"), любой кризис указывает на недостаток существующего пакета инфраструктур. Стагнация и кризис наступают тогда, когда старые инфраструктуры становятся недостаточны, перестают обеспечивать ресурсами новые и старые процессы. Кризис продолжается до тех пор, пока не будут сформированы новые инфраструктуры. Новые технологии и основанные на них элементы нового инфраструктурного √áпакетаƒå начинают складываться в конце старого цикла, но пока из них не будет сформирована полноценная новая технологическая и инфраструктурная платформа, которая обеспечит ресурсами новые процессы, выхода из кризиса не произойдет.

Работы Рифкина, с этой точки зрения в более грубой и простой форме продолжают исследования циклистов – в том числе упомянутого выше русского ученого начала ХХ в. Н.Д. Кондратьева. В основу так называемых "больших циклов коньюктуры" Кондратьев положил смену базовых технологий и утверждал, что перед и в начале √áповышательной волныƒå большого цикла происходят крупные открытия и изобретения, порождающие значительные изменения производства, торговли и места осуществивших их стран в мировом разделении труда; √áповышательная волнаƒå большого цикла также насыщена социальными изменениями .

Сегодня мы склонны предполагать, что помимо технологических процессов, на которые обращал внимание Кондратьев, в основе больших циклов развития также лежат процессы социальной динамики и смены поколений. Указанные временные параметры циклов, 47-60 лет, эмпирические "открытые" Кондратьевым, скорее всего, связаны с тем, что это цикл жизни и смены трех поколений, каждое из которых, как показывают современные исследования, занимают 16-21 год (при этом в ХХ веке эти сроки скорее возрастают, чем уменьшаются). Собственно, в этом и состоит, с нашей точки зрения, хронотоп "Кондратьевского" цикла. Именно смена трех поколений задает "единицу" цикличности.

Рассматривая сквозь призму этих представлений три промышленные революции, мы видим, что и здесь можно увидеть роль технологических и социальных факторов. С технологической точки зрения для начала новой промышленной революции необходимо, чтобы сложился "инфраструктурный пакет", на основе которого будут преодолены проблемы прошлого цикла.

Поэтому первая волна связана с накоплением разрозненных инновационных решений, которые в дальнейшем становятся элементами нового пакета. Это инновационная фаза. На следующем этапе новый пакет уже сложился – обычно это происходит в стране или регионе-лидере и может быть заимствовано странами догоняющей индустриализации как целое. Однако, здесь мы сталкиваемся с трудностями масштабирования, причины которых лежат в сфере культуры и сознания. Самым консервативным моментом в развитии оказываются люди с их привычными ментальными моделями, способами думать и делать. Задачи масштабирования нового технологического уклада могут быть решены только за счет перестройки систем образования и массовой подготовки.

Если теперь вновь вернуться к метафоре Третьей промышленной революции, то сегодня мы с вами находимся в ситуации, очень похожей на начало XVIII века, когда складывались основные "puzel1s" первой промышленной революции, или на конец XIX века, когда формировался новый инфраструктурный пакет современной экономической системы. Кризис начала XXI века связан с исчерпанием ресурсных возможностей второй промышленной революции и обеспечивающих ее инфраструктур. И сегодня мы находимся в его начальной стадии, когда нарабатываются ключевые инновационные решения.

Мы еще не знаем, какими они будут: поиск идет одновременно по разным направлениям. Более того, удачные решения в той или иной области (например, в энергетике) будут зависеть от решений в других областях – пока не соберется устойчивый инфраструктурный пакет. Страна или регион, которая сделает это впервые на своей территории – объективно займет место лидера мирового процесса. Можно предположить, что новая сборка сложится к 2020-2030 году. Но как только она возникнет, начнется массовое замещение старых хозяйственных и социальных укладов новыми. Процесс войдет в свою активную фазу; это приведет к гигантскому высвобождению людей из старых отраслей, исчезновению целого ряда профессий. Мы станем свидетелями потери работы массой индустриальных рабочих – в том числе в развитых странах - в связи с дальнейшей автоматизацией и роботизацией промышленного производства на фоне давления невостребованных трудовых ресурсов из новых индустриальных стран АТР, Африки и Латинской Америки. Серьезные изменения коснуться также социальных и политических институтов, социальной мобильности, сферы здравоохранения и образования.

Итак, мы с вами находимся в пике инновационной фазы большого цикла развития. Меняется ведущий технологический уклад. Формируются базовые технологии и инфраструктурные основы Третьей промышленной революции.

Хорошо описывать историю: мы видим следы уже состоявшегося процесса. Трудно прогнозировать: существует несколько разных вариантов до-стройки технологической платформы Третьей промышленной революции. Но главное: в ситуации перехода от одного цикла развития к другому, от одной платформы к другой старые смыслы размываются и перестают определять поведение и действие человека. То, что было востребовано еще 10 и тем более 20 лет назад, больше не нужно. Люди, получившие хорошую подготовку в старом технологическом укладе, остаются без работы и средств к существованию. Размываются границы профессиональных сообществ и видов деятельности. Обученный по старым лекалам человек, скорее, тормоз инноваций, чем их создатель. Взяв кредит и заплатив сумасшедшие деньги за высшее образование, молодой человек не может найти работу по специальности и оказывается "банкротом", еще ничего не сделав и не предприняв.

Не нужно думать, что этого никто не видит и не знает. Молодой человек уже в старших классах школы, а иногда и раньше слышит об этом от взрослых и через СМИ, читает в Интернете и обсуждает со сверстниками. В этих условиях получение традиционного образования оказывается под вопросом. Оно бессмысленно в новой ситуации.