Разное        30.10.2021   

Коронный газовый разряд. Виды разрядов и их применение

Разряд в газе, сохраняющийся после действия внешнего ионизатора, называется самостоятельным.

1. Тлеющий разряд возникает при низких давлениях. Если к электродам, впаянным в стеклянную трубку длиной 30-50 см, приложить постоянное напряжение в несколько сотен вольт, постепенно откачивая из трубки воздух, то при давлении 5,3 6,7 кПа возникает разряд в виде святящегося извилистогошнура. При дальнейшемпонижении давления шнур утолщается, и при давлении 13 Па разряд имеет вид, схематически

изображённый на рис. 5:

2. Искровой разряд возникает при больших напряжённостях электрического поля в газе, находящемся под давлением порядка атмосферного. Искра имеет вид ярко светящегося тонкого канала, сложным образом разветвлённого и изогнутого.

Объяснение искрового разряда даётся на основе стримерной теории , согласно которой возникновению ярко светящегося канала искры предшествует появление слабосветящихся скоплений ионизированного газа – стримеров . Стримеры возникают в результате образования электронных лавин посредством ударной ионизации и в результате фотонной ионизации газа. Лавины, догоняя друг друга, образуют проводящие мостики из стримеров, по которым в следующие моменты времени устремляются мощные потоки электронов, образующие каналы искрового разряда.

3. Дуговой разряд . Если после зажигания искрового разряда от мощного источника постепенно уменьшать расстояние между электродами, то разряд становится непрерывным – возникает дуговой разряд. При этом сила тока резко возрастает, достигая сотен ампер, а напряжение на разрядном промежутке падает до нескольких десятков вольт. Дуговой разряд можно получить от источника низкого напряжения минуя стадию искры.

По современным представлениям, дуговой разряд поддерживается за счёт высокой температуры катода из-за интенсивной термоэлектронной эмиссии, а также термической ионизацией молекул, обусловленной высокой температурой газа.

4. Коронный разряд – высоковольтный электрический разряд при высоком (например, атмосферном) давлении в резко неоднородном поле вблизи электродов с большой кривизной поверхности. Когда напряжённость поля вблизи острия достигает 30 кВ/см, то вокруг него возникает свечение, имеющее вид короны, чем и вызвано название этого вида разряда.

В зависимости от знака коронирующего разряда различают отрицательную или положительную корону. В случае отрицательной короны рождение электронов, вызывающих ударную ионизацию молекул газа, происходит за счёт эмиссии их из катода под действием положительных ионов, в случае положительной – в следствие ионизации газа вблизи анода.

Возникновение стримеров в объеме между электродами не всегда приводит к искре, а может вызвать и разряд другого типа коронный разряд. На рисунке показана схема прибора, с помощью которого можно воспроизвести коронный разряд. В этом приборе тонкая проволока помещается по оси полого металлического цилиндра.

При напряжении между проволокой и цилиндром в пространстве между ними возникает неоднородное электрическое поле с максимальной напряженностью около проволоки. Когда напряженность поля вблизи проволоки приближается к пробивному значению напряженности воздуха (около U п =30 000 В/м) между проволокой и цилиндром зажигается коронный разряд и в цепи пойдет ток, т.е. вокруг проволоки возникает свечение –корона. Внешний вид короны при отрицательном потенциале проволоки (отрицательная корона) несколько отличается от положительной короны.

При отрицательном потенциале проволоки электронные лавины начинаются у проволоки, распространяются к аноду и на некотором расстоянии стримеры обрываются вследствие уменьшения напряженности поля. В случае положительной короны электронные лавины зарождаются на внешней границе (поверхности) короны и движутся по направлению к проволоке. В отличие от искрового разряда в коронном разряде имеет место неполный пробой газового промежутка, так как в нем электронные лавины не проникают через весь слой газа E = .

Внутри корон имеются и положительные, и отрицательные ионы. За пределами короны будут ионы только одного знака: отрицательные при отрицательной короне; положительные ионы при положительной короне.

Коронный разряд может возникнуть не только у проволоки, но и у острия и вообще у всех электродов, возле которых образуется очень сильное неоднородное поле. Коронный разряд сопровождается шипящим звуком и легким потрескиванием. Коронный разряд возникает на высоковольтных линиях электропередачи и вызывает утечки электронных зарядов, т.е. электроэнергии.

Применение коронного разряда.

1. Электрическая очистка газов (электрофильтры). Известен такой опыт – сосуд, наполненный дымом, моментально делается совершенно прозрачным, если внести в него острые металлические электроды, находящиеся под высоким напряжением.

Этот эффект используется для очистки газов. Содержащиеся твердые и жидкие частицы в газе в коронном разряде взаимодействуют с ионами и становятся заряженными частицами (ионы «прилипают» к частицам пыли) и далее направляются к электродам и осаждаются. Кроме того, такие электрофильтры позволяют извлечь из газов многие тонны ценных продуктов в производстве серной кислоты и цветных металлов в линейном производстве.

2.Счетчики электронных частиц.

Напряжение U выбирают таким, чтобы оно было несколько меньше «критического», т.е. необходимого для зажигания коронного разряда внутри счетчика. При попадании в счетчик быстро движущегося электрона он ионизует молекулы газа внутри объема, отчего напряжение зажигания короны понижается. В счетчике возникает разряд, а в цепи появляется слабый кратковременный импульс тока. Для регистрации сигнала используется чувствительный электрометр Е, каждый раз при попадании частицы (даже одного электрона) в объем счетчика листочки электрометра дают отброс.

§7. Классификация электрических разрядов .

Электрические разряды в газах протекают по-разному, т.е. в разряде реализуется те или иные фундаментальные (элементарные) процессы, которые являются для данного вида разряда и определяют его форму; его характерные особенности.

Как мы уже знаем, имеется ограниченное число элементарных процессов, которые могут реализоваться в объеме газового разряда, еще раз перечислим эти процессы:

1) Столкновения частиц газа результат: обмен энергиями, импульсом, возбуждение атомов, ионизация.

2) Присоединение электронов результат: возникает отрицательный ион, уменьшается концентрации электронов.

3) Рекомбинация результат: рождается излучение (фотон).

4) Получение и испускание излучения в объеме разряда.

5) Диффузия заряженных частиц.

6) Электродные эффекты: термоэлектронная эмиссия; внешний фотоэффект, эмиссия при электронном ударе, эмиссия при ударе положительных ионов: эмиссия при ударе нейтральных атомов; автоэлектронная эмиссия.

Одновременно все эти элементарные – фундаментальные процессы в разрядах не реализуются. В зависимости от условий реализуются только некоторые процессы, и этот набор элементарных процессов определяет основные свойства разряда, т.е. данный вид разряда отличается от другого набором элементарных процессов. Сам этот набор или вид разряда определяется следующими параметрами системы: величиной тока напряжением между электродами; давлением газа, геометрией разрядной камеры, материалом электродов и состоянием их поверхности, температурой электродов и др.

Вид разряда в основном определяется напряжением на электродах, величиной тока разряда и давлением в разрядной камере. При этом напряжение и ток является независимым параметрами системы.

Таким образом, зависимость напряжения от тока становится наиболее важной интегральной характеристикой электрического разряда U = f(I) еще называется вольт-амперной характеристикой разряда. Она формируется в зависимости от внутренних процессов, следовательно, по ней можно определить вид разряда.

Итак, рассмотрим, как один вид разряда переходим в другой вид с помощью вольт-амперной характеристики.

Участок ОВ − несамостоятельный темный разряд, образование носителей тока происходит лишь за счет внешнего ионизатора, на участке ОА реализуется рекомбинация, на АВ − все заряды достигают электродов, рекомбинацией зарядов можно пренебречь.

За точкой В начинается ионизация нейтральных частиц электронным ударом, возникают лавины электронов и ионов. Однако если убрать внешний ионизатор, разряд прекращается. Это несамостоятельный таунсендовский разряд − это участок ВС.

На участок СD заметную роль играют вторичные электроны, выбиваемые из катода положительными ионами, световыми квантами, возбужденными молекулами. Необходимость в поддержании ионизации за счет энергии внешних источников отпадает − разряд становится самостоятельным, его еще называют самостоятельным таунсендовским разрядом (это участок СЕ).

На участке EF таунсендовский разряд переходит в нормальный тлеющий разряд, которому соответствует участок FH. На участок НК с ростом повышается и напряжение. Разряд, соответствующий участку НК называется аномальном тлеющим разрядом.

Далее с ростом тока увеличивается температура катода, усиливается роль термоэлектронной эмиссии, разряд контрагируется и образуется дуговой разряд. Дуговой разряд поддерживается за счет термоэлектронной эмиссии с катода.

Стационарный тлеющий разряд при низком давлении.

С ростом тока самостоятельный таунселовский разряд (участок СЕF) может развивается по-разному и иметь несколько форм. Если при давлении около 1 мм. рт. ст. разряд происходит между электродами, подключенными к источнику постоянного тока, то реализуется нормальный разряд.

Участок FH вольт-амперной характеристики соответствует тлеющему разряду. Отличительным признаком тлеющего разряда является своеобразное распределение потенциала вдоль длины межэлектродного промежутка. Распределение потенциала приводит к тому, что тлеющий разряд имеет характерный неоднородный вид, следовательно, и неоднородную структуру, разряд кажется как бы разделенным на части. Тлеющий разряд состоит из прикатодной области, и положительного столба.

Рассмотрим различные части разряда. Начиная от катода к аноду.

Катодная область разряда.

Электроны, необходимые для поддержания разряда, в основном эмитируется при бомбардировке катода положительными ионами. Вторичные электроны выходят, из катода имея, малые скорости, вследствие этого они (вблизи поверхности образуют отрицательный пространственный заряд) еще не имеют достаточные энергии для возбуждения молекул газа, поэтому молекулы не излучают, и непосредственно у поверхности катода образуется темное пространственно, заполненное медленными электронами. Этот очень тонкий несветящийся слой газа называется - темное пространство Астона. Ток в этой области в основном создается положительными ионами.

Далее электрона ускоряются полем, кинетическая энергия электронов становится достаточной для возбуждения молекул газа и это служит причиной возникновения тонкого светящего слоя газа, называемого первым катодным свечением. В этой области электроны при столкновениях частичного или полностью теряют скорость. Поэтому за первым катодным свечением образуется следующее темное катодное пространство. В этой области происходит слабая рекомбинация электронов с положительными ионами, поэтому здесь происходит очень слабое излучение. В темном катодном пространстве электроны сильно разгоняются до скоростей, при которых они интенсивно ионизуют молекул газа, а следовательно, и размножаются.

В конце второго темного катодного пространства число электронов уже настолько велико, что ток почти полностью переносится электронами, и они заметно уменьшают положительный пространственный заряд, даже образуют область отрицательного пространственного заряда. В этой области прекращается дальнейшее ускорение электронов, а энергия накопленная в области второго катодного темного пространства расходуется в основном на интенсивное возбуждение и ионизации молекул. Это происходит в области второго катодного свечения (отрицательное катодное свечение). В результате энергия электронов уменьшается, постепенно в интенсивность возбуждения и ионизации также уменьшается, следовательно, падает число электронов (и за счет рекомбинации и диффузии), настолько, что отрицательный пространственный заряд обращается в ноль. Соответственно изменяется напряженность электрического поля и в точке исчезновения отрицательного заряда Е принимает постоянное значение (около 1 В/см) и не меняется до прианодной области заряда. В этом месте начинается положительный столб тлеющего разряда.

Пространство, занимаемое темным пространством Астона первым катодным свечением и вторым темным пространством, называется областью катодного падения потенциала. Как видно из рисунка, падение потенциала между электродами почти полностью реализуется на незначительном участке у катода. Длина этого участка изменяется обратно пропорционального давления газа. При P = 1 мм рт.ст. dc составляет около 10 мм, а U=100-250 В.

В нормальном тлеющем разряде плотностью тока при увеличение или уменьшение тока разряда остается постоянной. Но зависит от давления Р и изменяется по закону P 2 . Например, при P = 1 мм рт.cт. плотность в среднем j = 0,1 мА/см 2 = 1·10 4 А/см 2 . Но j зависит еще от природы газа и от материала катода. Из I=jS следует, что при малом токе часть площади принимает участие в разряде.

В этих условиях остается постоянным и катодное падение потенциала U k . Для диапазона давлений от 1-10 мм рт.cт. значение U k не зависит от давления и однозначно определяется природой газа и материала катода. Примеры

С ростом тока разряда наступает момент, когда вся площадь катода принимает участие в разряде, с этого момента с дальнейшим ростом тока начинается увеличение катодного падения потенциала. Напряженность поля Е возрастает до тех пор, пока не обеспечивается необходимая ионизация для поддержания роста тока. В этих условиях нормальный тлеющий разряд переходит в аномальный тлеющий разряд.

где, k − константа, зависящая от вида газа и материала катода.

Положительный столб.

Положительный столб состоит из плазмы, а плазма является нейтральной электропроводящей средой. Поэтому положительный столб тлеющего выполняет роль обыкновенного проводника, соединяющего прикатодную область с прианодной частью разряда. В отличие от остальных частей тлеющего разряда, которые имеют конкретные размеры, и структуру, зависящие от вида газа, его давления и плотности разрядного тока, длина положительного столба определяется размерами разрядной камеры, а по структуре столб представляет собой ионизированный газ (n e ≈ n i ), т.е. он может иметь любую длину. Напряженность поля порядка 1 В/см, с ростом давления имеет тенденцию возрастать. Напряженность изменяется также при изменении радиуса камеры (трубки) − сжатие разряда увеличивает поле: Е всегда принимает значение, как раз достаточное для поддержания в столбе той степени ионизации, которая нужна для стационарного горения разряда. Энергия в столбе достаточна для ионизации. И процесс ионизации компенсирует убыль электронов и ионов за счет рекомбинации и диффузии с последующей нейтрализация на электродах и на стенках камеры свечение положительного столба связано всеми этими процессами. В отличие от других частей, положительном столбе тлеющего разряда хаотическое движение заряженных частиц преобладает над направленным.

Анодная область.

Анод притягивает электроны из положительного столба и около места привязки образуется отрицательный пространственный заряд и рост напряженности поля, в результате этого происходит перенос тока разряда к поверхности анода. Область анодного падения является пассивной частью разряда. Анод не эмитирует зарядов. Тлеющий разряд может существовать без анодной области, так же без положительного столба. Положительный столб разряда не зависит от приэлектродных процессов. Отличием катодных частей является преобладающе направленное движение электронов и ионов.

Применение тлеющего разряда.

Тлеющий разряд в разряженных газах находит разнообразное применение в газонаполненных выпрямителях, преобразователях, индикаторах, стабилизаторах напряжения, газосветных лампах дневного света. Например, в неоновых лампах (для целей сигнализации) тлеющий разряд используется в неоне, электроды покрывают слоем бария и они имеют катодное падение потенциала порядка 70 В и зажигаются при включении в осветительную сеть.

В лампах дневного света тлеющий разряд происходит в парах ртути. Излучение ртутного пара поглощается слоем люминофора, которым покрыта внутренняя поверхность газосветной трубки.

Тлеющий разряд используется также для катодного распыления металлов. Поверхность катода при тлеющем разряде вследствие бомбардировки положительными ионами газа сильно нагревается в отдельных малых участках и поэтому постепенно переходит в парообразное состояние. Помещая предметы вблизи катода разряда, их можно покрыть равномерным слоем металла.

В последние годы тлеющий разряд находит применение в плазмохимии и лазерной технике. В них тлеющий разряд используется в аномальном режиме при повышенном давлении.

1. p = 6,7 кПа ≈ 50 мм. рт. ст.

v = 15,7 м/c

2. p = 8 кПа ≈ 60 мм. рт. ст.

v = 21м/c

Типичные вольт - амперные характеристики тлеющего разряда в поперечном потоке воздуха.

1 мм. рт. ст. = 133 Па. 1кПа=1000/133 = 8мм.рт.ст.

Тлеющий разряд

Тлеющим разрядом обычно называют самостоятельный разряд, в котором катод испускает электроны вследствие бомбардировки его положительными ионами и фотонами, образующимися в газе.

В отличие от таунсендновского разряда, где плотности электрического тока невелики, а влияние пространственного заряда несущественно, в тлеющем разряде плотности тока значительно больше, а пространственные заряды, возникающие из-за большого различия в массах электронов и положительных ионов, делают электрическое поле в газе неоднородным. Для тлеющего разряда характерна большая напряженность электрического поля и соответствующее ей большое падение потенциала вблизи катода (катодное падение).

Уменьшение давления до 0,1÷0,01 мм рт. ст. приводит к появлению в различных частях объема газа характерных областей, хотя и не всегда отчетливо выраженных. Основными и наиболее заметными из них в порядке следования со стороны катода (рис. 7.8) являются:

1) катодный слой – это тонкая светящаяся пленка, где происходит возбуждение атомов и молекул ударами электронов, но еще нет ионизации. Возвращаясь в нормальное состояние, возбужденные атомы излучают кванты света, чем и объясняется свечение;

2) темное катодное пространство (темное круксовое или темное гитторфовое пространство). На самом деле оно не совсем темное, но кажется таковым лишь на фоне примыкающих к нему более светлых областей разряда. В этой части пространства начинается ионизация атомов и молекул и нарастание электронных лавин. Из-за возможности ионизации уменьшается вероятность возбуждения атомов и молекул, с чем связано ослабление свечения газа. Область темного катодного пространства наиболее важна для поддержания разряда, так как созданные здесь положительные ионы обеспечивают необходимую эмиссию электронов с катода;

3) отрицательное тлеющее свечение (тлеющее свечение), в которое переходит темное катодное пространство. Это свечение резко ограничено только со стороны катода. Свечение возникает из-за рекомбинации электронов с положительными ионами, а также вследствие квантовых переходов возбужденных атомов на более низкие энергетические уровни;

4) при продвижении к аноду яркость тлеющего свечения ослабевает, и оно постепенно переходит в так называемое фарадеево темное пространство, в которое уже не долетают быстрые электроны электронных лавин (см. рис. 7.8);

5) остов разряда – это столб ионизованного светящегося газа в более или менее узких трубках. Иногда его называют положительным свечением или положительным столбом разряда. Обычно он простирается до самой поверхности анода. При некоторых условиях между положительным столбом и анодом видно темное анодное пространство, а на самой поверхности – анодное свечение, или анодная светящаяся пленка. Положительный столб иногда разделяется на отдельные чередующиеся светлые и темные полосы (страты). В этом случае разряд называют сложным. Наличие положительного столба несущественно для поддержания разряда, хотя он и имеет большое значение в применениях разряда.

Свечение в положительном столбе происходит в основном за счет рекомбинации электронов с положительными ионами. На последних нескольких свободных пробегах (в области так называемого анодного падения) электроны могут накопить достаточную кинетическую энергию, чтобы вызвать возбуждение атомов, в то время как положительные ионы оттягиваются от анода. Это приводит к анодному свечению.

Перечисленные первые четыре области называются катодными частями разряда. В них происходят все процессы, необходимые для поддержания разряда.

При больших внешних сопротивлениях, когда сила тока в разрядной трубке невелика, поверхность катода, покрытая свечением и принимающая участие в разряде, пропорциональна силе тока в трубке (закон Геля). При изменении тока плотность его остается приблизительно постоянной. Вместе с ней остается постоянным и катодное падение потенциала. В этом случае оно называется нормальным катодным падением. В большинстве случаев оно лежит в пределах 100 - 300 В. Температура катода не оказывает влияния на величину нормального катодного падения, пока не возрастет термоэлектронная эмиссия с поверхности катода. С хорошим приближением нормальное катодное падение пропорционально работе выхода электрона из катода. Это используется для устройства трубок с очень малым потенциалом зажигания. Такова, например, неоновая лампочка, в которой электродами служат два железных листочка, покрытых слоем бария для уменьшения работы выхода. Катодное падение составляет в этом случае всего 70 В, и тлеющий разряд зажигается в неоновой лампочке уже при включении в обычную осветительную сеть.

Когда с увеличением тока вся поверхность катода оказывается покрытой свечением, начинает возрастать и катодное падение. В этом случае оно называется аномальным катодным падением, а разряд – аномальным тлеющим разрядом.

Электроны, выбиваемые с поверхности катода положительными ионами, ускоряются в области катодного падения потенциала. При уменьшении давления газа увеличивается средняя длина свободного пробега электронов, а с ней – и темное катодное пространство. При давлении 0,01÷0,001 мм рт. ст. (в зависимости от размеров трубки) темное катодное пространство заполняет почти всю трубку, и электронный пучок движется в ней почти без столкновений. Такие электронные пучки получили название катодных лучей. Они были открыты Круксом еще до установления их физической природы (до открытия самого электрона). Если на пути катодных лучей поставить металлический экран, то за ним на противоположной стороне трубки наблюдается его тень. При поднесении магнита пучок лучей и образуемая им тень смещаются в сторону. Электроны катодных лучей, вышедшие с катода, ускоряются электрическим полем вблизи его поверхности и далее движутся перпендикулярно к ней по инерции. Попадая на стенки трубки, электроны сообщают им отрицательный заряд. Однако катод нейтрализуется положительными ионами, подтекающими из газа к стенкам трубки, а отрицательные ионы газа попадают на анод. Если поверхности катода придать вогнутую сферическую форму, то катодные лучи сфокусируются в центре этой сферы. Когда давление в трубке настолько мало, что область темного катодного пространства захватывает анод, тлеющий разряд в трубке прекращается. Вместе с ним прекращается также испускание катодных лучей и свечение стенок трубки.

Катодные лучи используются в так называемых ионных рентгеновских трубках для получения рентгеновских лучей. Ионные рентгеновские трубки обладают тем недостатком, что в результате различных процессов количество газа в трубке уменьшается с течением времени. Когда давление газа в трубке становится меньше 0,001 ¸ 0,0001 мм рт. ст., тлеющий разряд в них не зарождается и трубка перестает работать. В настоящее время применяются почти исключительно электронные рентгеновские трубки, обладающие большой устойчивостью в работе, чем ионные. В них тлеющий разряд не используется.

Если в катоде просверлить малые отверстия, то положительные ионы, бомбардирующие катод, пройдя через отверстия, попадут в за катодное пространство и там будут распространяться в виде прямолинейных лучей. Эти лучи были названы положительными, или каналовыми, лучами, поскольку они выходят из отверстий катода, как из каналов. Каналовые лучи заметны в трубке в виде слабо светящихся пучков.

Они, как и катодные лучи, вызывают свечение стекла трубки. Из-за наличия процессов перезарядки в пучке каналовых лучей имеются не только положительные, но и отрицательные ионы, а также быстрые, отчасти возбужденные нейтральные частицы. В магнитном поле такой пучок разделяется на три пучка: положительные ионы отклоняются в одну сторону, отрицательные в противоположную сторону, а нейтральные молекулы и атомы не испытывают никакого отклонения. При повторном прохождении пучков через магнитное поле каждый из них снова распадается на три пучка. Отсюда следует, что процессы перезарядки происходят не только перед катодом, но и продолжаются в закатодном пространстве.

Искровой разряд

Искровой разряд характеризуется прерывистой формой даже при использовании источников постоянного тока. Он возникает в газе обычно при давлениях порядка атмосферного. В естественных природных условиях искровой разряд наблюдается в виде молнии. По внешнему виду он представляет собой пучок ярких зигзагообразных разветвляющихся тонких полосок, мгновенно пронизывающих разрядный промежуток, быстро гаснущих и постепенно сменяющих друг друга (рис. 7.9). Эти полоски называются искровыми каналами. Они начинаются как на положительном электроде, так и на отрицательном электродах, а также в любой точке между ними. Каналы, развивающиеся от положительного электрода, имеют четкие нитевидные очертания, а развивающиеся от отрицательного электрода имеют диффузные края и более мелкое ветвление.

Так как искровой разряд возникает при больших давлениях газа, то потенциал зажигания очень высок. Однако после того как разрядный промежуток "пробит" искровым каналом, сопротивление этого промежутка становится очень малым, через канал проходит кратковременный импульс тока большой силы, в течение которого на разрядный промежуток приходится лишь незначительное напряжение. Если мощность источника не очень велика, то после такого импульса тока разряд прекращается. Напряжение между электродами начинает повышаться до прежнего значения, и пробой газа повторяется с образованием нового искрового канала. Время t нарастания напряжения тем больше, чем больше емкость C между электродами. Поэтому включение конденсатора параллельно разрядному промежутку увеличивает время между двумя последовательными искрами, а сами искры становятся более мощными. Через канал искры проходит большой электрический заряд, и поэтому увеличивается амплитуда и длительность импульса тока. При больших емкостях канал искры ярко светится и имеет вид широких полос. То же происходит при увеличении мощности источника тока. Тогда говорят о конденсированном искровом разряде, или конденсированной искре. Максимальная сила тока в импульсе при искровом разряде меняется в широких пределах в зависимости от параметров цепи разряда и условий в разрядном промежутке, достигая нескольких сотен килоампер. При дальнейшем увеличении мощности источника искровой разряд переходит в дуговой разряд.

В результате прохождения импульса тока через канал искры в канале выделяется большое количество энергии (порядка 0,1 - 1 Дж на каждый сантиметр длины канала). С выделением энергии связано скачкообразное увеличение давления в окружающем газе, образование цилиндрической ударной волны, температура, на фронте которой ~10 4 К. Происходит быстрое расширение канала искры со скоростью порядка тепловой скорости атомов газа. По мере продвижения ударной волны температура на ее фронте начинает падать, а сам фронт отходит от границы канала. Возникновением ударных волн объясняются звуковые эффекты, сопровождающие искровой разряд: характерное потрескивание в слабых разрядах и мощные раскаты грома в случае молнии.

В момент существования канала, особенно при высоких давлениях, наблюдается наиболее яркое свечение искрового разряда. Яркость свечения неоднородна по сечению канала и имеет максимум в его центре.

Механизм искрового разряда, с точки зрения современной, общепринятой теории, так называемой стримерной теории искрового пробоя, которая подтверждается экспериментально, заключается в том, что если вблизи катода зародилась электронная лавина, то на ее пути происходит ионизация и возбуждение молекул и атомов газа. Существенно, что световые кванты, испускаемые возбужденными атомами и молекулами, распространяясь к аноду со скоростью света, сами производят ионизацию газа и дают начало новым электронным лавинам. Таким путем во всем объеме газа проявляются слабо светящиеся скопления ионизованного газа, называемые стримерами. В процессе своего развития отдельные электронные лавины догоняют друг друга и, сливаясь вместе, образуют хорошо проводящий мостик из стримеров. По этому мостику в последующий момент времени и устремляется мощный поток электронов, образующий канал искрового разряда. Поскольку проводящий мостик образуется в результате слияния практически одновременно возникающих стримеров, время его образования много меньше времени, которое требуется отдельной электронной лавине для прохождения расстояния от катода к аноду. Развитие отрицательного стримера показано на рис. 7.10. Наряду с отрицательными стримерами, т.е. стримерами, распространяющимися от катода к аноду, существуют также положительные стримеры, которые распространяются в противоположном направлении.

Надо отметить, что это теория объясняет основные особенности искрового разряда, хотя в количественном отношении и не может считаться завершенной.

Коронный разряд

Коронный разряд возникает при сравнительно высоких давлениях газа (порядка атмосферного) в сильно неоднородном электрическом поле, которое можно получить между двумя электродами, поверхность одного из которых имеет большую кривизну (тонкая проволочка, острие). Схема получения коронного разряда показана на рис. 7.11. Надо отметить, что наличие второго электрода необязательно, его роль могут играть окружающие заземленные электроды. При достижении напряженности электрического поля вблизи электрода с большой кривизной значения порядка 3×10 4 В/м вокруг этого электрода возникает свечение, имеющее вид оболочки или короны, откуда и произошло название разряда. Если корона возникает вокруг отрицательного электрода, то она называется отрицательной. В противоположном случае корона называется положительной. Вид положительной короны показан на рис. 7.12 слева, вид отрицательной короны – справа. Механизм возникновения разряда в этих двух случаях – разный.

В случае отрицательной короны положительные ионы, образуемые электронными лавинами, ускоряются в сильно неоднородном электрическом поле вблизи катода. Попадая на катод, они выбивают из него электроны (вторичная электронная эмиссия). Выбитые электроны, провзаимодействовав с катодом, на своем пути порождают новые электронные лавины. Так как электрическое поле убывает при удалении от электрода, то на некотором расстоянии электронные лавины обрываются, электроны попадают в "темную" область и там прилипают к нейтральным молекулам газа. Образовавшиеся отрицательные ионы и являются основными носителями тока в "темной" области. Пространственный отрицательный заряд этих ионов вблизи анода ограничивает общий разрядный ток. В случае чистых электроположительных газов отрицательные ионы не образуются, а носителями зарядов в "темной" области являются сами электроны. В "темной" области разряд носит несамостоятельный характер.

В положительной короне, когда катодом служит электрод с большим радиусом кривизны, электрическое поле у катода слабое. Поэтому электронные лавины не могут порождаться электронами, выбиваемыми из катода вследствие вторичной эмиссии. Электронные лавины порождаются электронами, возникающими вблизи анода при объемной ионизации газа фотонами, излучаемыми коронирующим слоем. Они зарождаются на внешней границе коронирующего слоя и распространяются к положительному электроду (обладающему большей кривизной). Положительные ионы, двигаясь через "темную" область к катоду, образуют пространственный заряд, который снова ограничивает силу разрядного тока.

При увеличении напряжения между электродами "темная" область коронного разряда исчезает, и возникает искровой разряд с полным пробоем разрядного промежутка.

Корона иногда возникает в естественных условиях под влиянием атмосферного электричества на верхушках деревьев, корабельных мачт и пр.

С возникновением коронного разряда приходится считаться в технике высоких напряжений. Образуясь вокруг проводов высоковольтных линий передач электроэнергии, корона ионизует окружающий воздух, вследствие чего возникают вредные токи утечки. Для уменьшения этих токов утечки провода высоковольтных линий, а также подводящие провода к высоковольтным установкам должны быть достаточно толстыми. Коронные разряды, поскольку они носят прерывистый характер, являются источниками значительных радиопомех.

Коронный разряд используется в электрофильтрах, предназначенных для очистки промышленных газов от примесей твердых и жидких частиц (дыма в производстве серной кислоты, в литейных цехах заводов и т.д.).

Дуговой разряд

Если после получения искрового разряда от мощного источника постепенно уменьшать расстояние между электродами (или сопротивление внешней цепи), то разряд из прерывистого становится непрерывным. Возникает новая форма газового разряда, называемая дуговым разрядом. При этом ток резко увеличивается, достигая десятков и сотен ампер, а напряжение на разрядном промежутке падает до нескольких десятков вольт.

Дуговой разряд можно получить от источников низкого напряжения, минуя стадию искры. Для этого электроды сближают до соприкосновения, в результате они сильно нагреваются (раскаляются) электрическим током, после чего их разводят, получая при этом яркую электрическую дугу. Именно таким путем электрическая дуга была впервые получена в 1802 г. русским физиком В.В. Петровым.

В настоящее время электрическая дуга, горящая при атмосферном давлении, чаще всего получается между специальными угольными электродами, изготовленными из прессованного графита со связывающими веществами (рис. 7.13).

Согласно В.Ф. Миткевичу, дуговой разряд поддерживается главным образом за счет термоэлектронной эмиссии с поверхности катода. Подтверждением этой точки зрения может служить установленный на опыте факт, что во многих случаях устойчивая дуга получается только при условии, что температура катода достаточно высока. При охлаждении катода дуга горит неустойчиво, периодически гаснет и снова зажигается. Охлаждение же анода не вызывает нарушения устойчивого режима горения дуги.

С возрастанием разрядного тока сопротивление дуги R сильно уменьшается из-за увеличения термоэлектронной эмиссии с катода и ионизации газа в разрядном промежутке. При этом сопротивление убывает сильнее, чем возрастает ток. Вследствие этого с увеличением тока напряжение на разрядном промежутке не возрастает, а убывает. Говорят, что дуга имеет падающую вольтамперную характеристику, т.е. такую характеристику, когда напряжение на разрядном промежутке уменьшается с возрастанием тока. Поэтому для поддержания устойчивого горения дуги при случайных изменениях тока, например вследствие охлаждения катода, напряжение на электродах дуги должно быть повышено. С этой целью в цепь дуги включают последовательно балластное сопротивление. При случайном уменьшении тока напряжение на балластном сопротивлении уменьшается. Поэтому при неизменном подводимом общем напряжении напряжение на газоразрядном промежутке должно увеличиваться, чем и обеспечивается стабильное горение дуги.

Наряду с дуговыми разрядами, обусловленными термоэлектронной эмиссией, существуют и разряды другого типа. Примером могут служить дуговые разряды в ртутных лампах. Ртутная лампа представляет собой предварительно откачанный кварцевый или стеклянный баллон, пропускающий ультрафиолетовые лучи, наполненный парами ртути (рис.7.14). Дуговой разряд зажигается электрической искрой между двумя столбиками ртути, служащими электродами лампы. Ртутная дуга является мощным источником ультрафиолетовых лучей. Поэтому такие лампы применяют в медицине и в научных исследованиях.

Исследования показали, что источником мощной эмиссии электронов в ртутной лампе является небольшое, ярко светящееся пятно, возникающее на катоде и непрерывно бегающее по его поверхности (так называемое катодное пятно). Плотность тока в катодном пятне огромна и может достигать 10 6 ¸10 7 А/см 2 . Катодное пятно может возникнуть не только у поверхности ртутного, но и любого другого металлического электрода.

Ртутные дуги и аналогичные дуги с металлическими электродами получили название электрических дуг с холодным катодом. Дело в том, что раньше считалось, что катод действительно является холодным по всей его поверхности. Поэтому термоэлектронная эмиссия с катода не происходит или практически не играет никакой роли. Ленгмюр высказал предположение, что в случае холодного катода дуговой разряд поддерживается автоэлектронной эмиссией с катода. Действительно, катодное падение потенциала (~10 В) происходит на протяжении порядка длины свободного пробега электрона. Поэтому вблизи катода возникает сильное электрическое поле, достаточное, чтобы вызвать заметную автоэлектронную эмиссию. Несомненно, автоэлектронная эмиссия в дугах с "холодным" катодом играет существенную роль. Позднее появились указания на возможность нагрева таких катодов в отдельных точках до температур, при которых происходит большая термоэлектронная эмиссия, которая вместе с автоэлектронной эмиссией и поддерживает дуговой разряд. Хотя данный вопрос еще недостаточно исследован.


7.4. Понятие о плазме. Плазменная частота.
Дебаевская длина. Электропроводность плазмы

Плазмой называется ионизованный квазинейтральный газ, занимающий настолько большой объем, что в нем не происходит сколько-нибудь заметного нарушения квазинейтральности из-за тепловых флуктуаций. Квазинейтральность плазмы означает, что количества положительных и отрицательных зарядов в нем почти одинаковы. Нейтральным является каждый физически бесконечно малый элемент объема (объем малый макроскопический, но содержащий еще большое количество электронов и ионов). Заряды положительных и отрицательных ионов одинаковы и равны заряду электрона.

Достаточно сильное воздействие на плазму может привести к разделению зарядов в некоторой ее области. Такое воздействие может оказать на плазму, например, быстрая заряженная частица из числа электронов или ионов самой плазмы (при достаточно высокой температуре – тепловые флуктуации) или пришедшая извне.

Разделение положительных и отрицательных зарядов в плазме аналогично процессу поляризации диэлектрика. Однако в диэлектриках заряженные частицы не могут двигаться на большие расстояния (~10 -10 м), а в плазме возможны любые перемещения частиц.

Если из-за тепловых флуктуаций отрицательные заряды сместились на расстояние x, то на границах плазмы возникнут макроскопические заряды противоположных знаков с поверхностной плотностью

где n – концентрация частиц одного знака заряда.

С учетом того что , то в рассматриваемом случае

, (7.31)

где P – электрический дипольный момент единицы объема плазмы.

Если плазма бесконечна и в ней отсутствуют свободные электрические заряды, являющиеся источниками вектора D, имеем

. (7.32)

Из формулы (7.32) для напряженности электрического поля, возникшего в плазме, получим

Для плотности энергии электрического поля

. (7.34)

Сила, действующая на каждый электрон,

. (7.35)

Из выражения (7.35) видно, что сила пропорциональна смещению и направлена в сторону, противоположную смещению, т.е. она подобна квазиупругой силе. Следовательно, сила, действующая на электроны в плазме, вызывает гармонические колебания с частотой

где m – масса электрона.

Эта частота называется плазменной частотой.

Колебания электронов, возникшие в определенном месте плазмы, создадут волну той же частоты, распространяющуюся через плазму.

Поскольку энергия электрического поля черпается из кинетической энергии теплового движения частиц газа, величина w 0 не может превосходить 3nkT. На долю отрицательных частиц единицы объема приходится в среднем кинетическая энергия (и такая же энергия – на долю положительных). Следовательно, если опустить численный коэффициент 3, то должно выполняться соотношение

(nxe) 2 <(nkT)×2e 0 ,

. (7.37)

Величина D называется дебаевской длиной или дебаевским радиусом. Таким образом, чтобы плазма сохраняла квазинейтральность, ее линейные размеры должны намного превосходить дебаевский радиус.

В зависимости от степени ионизации a различают: слабо ионизованную плазму (при a порядка долей процента), умеренно ионизованную плазму (a нескольких процентов) и полностью ионизованную плазму. В земных природных условиях плазма встречается довольно редко (например, в канале молнии). В верхних слоях атмосферы, которые в большей степени подвержены воздействию ионизующих факторов (ультрафиолетовые и космические лучи), постоянно присутствует слабо ионизованная плазма (ионосфера). Ионосфера отражает радиоволны и делает возможной радиосвязь на больших расстояниях (порядка расстояния между диаметрально противоположными точками земного шара). В космическом пространстве плазма представляет собой наиболее распространенное состояние вещества. Солнце и горячие звезды, имеющие высокие температуры, состоят из полностью ионизованной плазмы. Поэтому многие проблемы астрофизики связаны с изучением физических свойств плазмы. На почве астрофизики возникла магнитная гидродинамика, в которой плазма, движущаяся в магнитных полях, рассматривается как сплошная жидкая среда, обладающая высокой проводимостью. Плазма образуется в различных формах газового разряда, например в положительном столбе тлеющего разряда, а также в главном канале искрового разряда. Физика плазмы – сравнительно новый, быстро развивающийся раздел физики, которому посвящены специальные курсы.

Оценим удельную проводимость g полностью ионизованной плазмы, состоящей из электронов и положительно заряженных ионов, каждый из которых обладает зарядом Ze. Движение ионов, ввиду их больших масс, можно не учитывать и считать, что весь ток создается движением легких электронов. Величина g определяется столкновением электронов с ионами. Столкновение электронов между собой на величину тока не влияют, поскольку при таких столкновениях полный импульс электронов не изменяется. От этих столкновений можно отвлечься. Между ионами и электронами плазмы действуют кулоновские силы притяжения – это дальнодействующие силы. Электрон сравнительно редко подходит к иону на такие малые расстояния, чтобы направление его движения изменилось резко и имело характер скачка. Гораздо большее значение имеют взаимодействия электрона сразу с очень большим количеством ионов, при которых направление траектории электрона меняется плавно и непрерывно. Отклонение электрона на большие углы от первоначального направления движения происходит в результате накопления малых отклонений при взаимодействии его с "далекими" ионами. Поэтому о столкновениях, длине и времени свободного пробега можно говорить лишь в условном смысле. Промежуток времени t , в течение которого направление движения электрона меняется на угол порядка 90 о, принято считать временем свободного пробега.

Для оценки величины i предположим, что электрон движется в поле положительного иона с зарядом Ze. Если v – скорость электрона на бесконечности, а r п - прицельный параметр, то при прохождении мимо иона траектория электрона отклоняется на угол Q, определяемый формулой

, (7.38)

где m – масса электрона.

Прицельный параметр r п, для которого Q = 90 о, определяется выражением

Ему соответствует "эффективное поперечное сечение":

. (7.40)

Учет далеких взаимодействий приводит к тому же результату, но увеличенному в L раз:

. (7.41)

Коэффициент L называется кулоновским логарифмом. Он почти не зависит от температуры и плотности плазмы. Для плазмы, состоящей из полностью ионизованного дейтерия, при kT ~ 10 кэВ и концентрации электронов n ~ 10 12 ¸10 15 см -3 , L » 15. Так как каждый положительный ион содержит Z элементарных зарядов, то концентрация таких ионов будет , а средняя длина и время "свободного пробега"Большое различие в массах электронов и ионов плазмы делает возможным в плазме существование таких квазиравновесных состояний, которые в известном приближении могут быть характеризованы двумя температурами. Действительно, предположим, что начальное распределение скоростей электронов и ионов плазмы изотропное, но не максвелловское. При столкновении электрона с другим электроном они обмениваются энергией, величина которой соответствует порядку начальной энергии самих электронов. Поэтому время установления распределения электронов по энергиям (т.е. максвелловского распределения) из-за столкновений между ними можно оценить по формуле (7.41), если в ней массу электрона m заменить приведенной массой . Это время, называемое электронным временем релаксации , пропорционально квадратному корню из массы электрона .

Точно так же определяется ионное время релаксации, за которое успевает устанавливаться распределение по энергиям между ионами из-за столкновений между ними: .

При столкновении электронов с ионами быстрая частица передает медленной лишь незначительную долю своей энергии, которая в среднем соответствует доле порядка от первоначальной энергии быстрой частицы. Для выравнивания энергий потребуется релаксационное время большее, чем . Таким образом,

. (7.45)

Из (7.45) следует:

.

Если плазму предоставить самой себе, то сначала установится максвелловское распределение скоростей электронов, затем ионов. Возникает квазиравновесное состояние, в котором электроны будут иметь температуру T e , а ионы – температуру T i . При этом T e ¹ T i . В этом случае плазму называют неизотермической или двухтемпературной. Затем в результате обмена энергиями между электронами и ионами установится максвелловское распределение для всей плазмы, характеризующейся общей температурой электронов и ионов (изотермическая плазма).

Когда плазма находится в электрическом поле, то в ней начинает существовать электрический ток и выделяться джоулево тепло. При этом энергию от поля получают почти исключительно электроны как наиболее подвижные частицы. Ионы нагреваются главным образом за счет энергии, которую они получают от "горячих" электронов при кулоновских взаимодействиях с ними. Так как последний процесс происходит сравнительно медленно, то температура электронов в плазме оказывается выше температуры ионов. Различие между ними может быть весьма значительным. Так, в положительном столбе тлеющего разряда при давлениях порядка 0,1 мм рт.ст. температура электронов может достигать 50 000 о С и выше, тогда как температура ионов не превышает нескольких сотен градусов.

Основной практический интерес, который представляет физика плазмы, связан с решением проблемы управляемого термоядерного синтеза. Для того чтобы в веществе начались достаточно интенсивные термоядерные реакции, его необходимо нагреть до температуры в несколько кэВ или десятков кэВ, а при таких температурах всякое вещество находится в состоянии плазмы. Наиболее перспективными "рабочими веществами" для термоядерного реактора являются изотопы водорода: дейтерий и тритий. Термоядерную реакцию синтеза легче получить не в чистом дейтерии, а в его смеси с тритием. Полное количество дейтерия в океанах ~ 4×10 13 т, что эквивалентно энергии ~ 10 20 кВт×лет (полная потребляемая на всем земном шаре мощность составляет ~ 10 10 кВт). Тритий как сильно радиоактивный элемент в природных условиях не встречается, а получается искусственно. В будущих термоядерных реакторах расход трития должен с избытком пополняться воспроизводством (регенерацией) его в результате облучения Li 6 нейтронами, получающимися в самих термоядерных реакторах.

Так как термоядерные реакции должны происходить сравнительно плавно и медленно, то возникает необходимость достаточно длительного удержания горячей плазмы в ограниченном объеме рабочей камеры и изоляции ее от стенок этой камеры. Для этого предлагается использовать магнитную термоизоляцию, т.е. помещать плазму в сильное магнитное поле, препятствующее ионам и электронам перемещаться в поперечном направлении и уходить на стенки камеры.

Необходимое требование, которому должен удовлетворять всякий термоядерный реактор, состоит в том, чтобы энергия, выделяющаяся в ядерных реакциях, с избытком компенсировала затраты энергии от внешних источников. Основными источниками потерь энергии является тормозное излучение электронов при кулоновских столкновениях последних, а также магнитотормозное (циклотронное или бетатронное) излучение, возникающее вследствие ускоренного движения электронов в магнитном поле. Для самоподдерживающихся термоядерных реакций требуется нагреть плазму до некоторой "критической" температуры (~50 кэВ). При этом должен выполняться так называемый критерий Лоусона (nt>10 16 с/см 3), где n – концентрация ионов плазмы (одного знака), а t – среднее время удержания плазмы.

Основная трудность, стоящая на пути создания управляемого термоядерного синтеза, связана с получением спокойной, или устойчивой, плазмы. Дело в том, что из-за дальнодействующего характера кулоновских сил в плазме происходят разные коллективные процессы, например самопроизвольно возникающие шумы и колебания, делающие плазму неустойчивой. Основные усилия при решении проблемы управляемого термоядерного синтеза направлены на подавление этих неустойчивостей.

Различают самостоятельные и несамостоятельные разряды в газе. Самостоятельный разряд поддерживается за счет действия только электрического напряжения. Несамостоятельный разряд может существовать при условии, что, помимо электрического напряжения, действуют еще какие-либо внешние ионизирующие факторы. Ими могут быть лучи света, радиоактивное излучение, термоэлектронная эмиссия накаленного электрода и др. Рассмотрим основные виды электрических разрядов, встречающиеся в ионных приборах.

Темный (или тихий) разряд является несамостоятельным. Он характеризуется плотностями тока порядка микроампер на квадратный сантиметр и весьма малой плотностью объемных зарядов. Поле, созданное приложенным напряжением, при темном разряде практически не изменяется за счет объемных зарядов, т. е. их влиянием можно пренебречь. Свечение газа отсутствует. В ионных приборах для радиоэлектроники темный разряд не используется, но он предшествует началу других видов разряда.

Тлеющий разряд относится к самостоятельным. Для него характерно свечение газа, напоминающее свечение тлеющего тела. Плотность тока при этом разряде достигает единиц и десятков миллиампер на квадратный сантиметр и получаются объемные заряды, существенно влияющие на электрическое поле между электродами. Напряжение, необходимое для тлеющего разряда, составляет десятки или сотни вольт. Разряд поддерживается за счет электронной эмиссии катода под ударами ионов.

Основными приборами тлеющего разряда являются стабилитроны – ионные стабилизаторы напряжения, газосветные лампы, тиратроны тлеющего разряда, цифровые индикаторные лампы и декатроны – ионные счетные приборы.

Дуговой разряд получается при плотностях тока, значительно больших, чем в тлеющем разряде. К приборам несамостоятельного дугового разряда относятся газотроны и тиратроны с накаленным катодом; в ртутных вентилях (экзитронах) и игнитронах, имеющих жидкий ртутный катод, а также в газовых разрядниках происходит самостоятельный дуговой разряд.

Дуговой разряд может быть не только при пониженном, но и при нормальном или повышенном атмосферном давлении.

Искровой разряд имеет сходство с дуговым. Он представляет собой кратковременный (импульсный) электрический разряд при сравнительно высоком давлении газа, например при нормальном атмосферном. Обычно в искре наблюдается ряд импульсных разрядов, следующих друг за другом.

Высокочастотные разряды могут возникать в газе под действием переменного электромагнитного поля даже при отсутствии токоподводящих электродов (безэлектродный разряд).

Коронный разряд является самостоятельным и используется в ионных приборах для стабилизации напряжения. Он наблюдается при сравнительно больших давлениях газа в случаях, когда хотя бы один из электродов имеет очень малый радиус кривизны. Тогда поле между электродами получается неоднородным и около заостренного электрода, называемого коро-нирующим, напряженность поля резко увеличена. Коронный разряд возникает при напряжении порядка сотен или тысяч вольт и характеризуется малыми токами.

Искровой разряд возникает в тех случаях, когда напряженность электрического поля достигает пробивного для данного газа значения Значение зависит от давления газа; для воздуха при атмосферном давлении оно составляет около . С увеличением давления возрастает. Согласно экспериментальному закону Пашена отношение пробивной напряженности поля к давлению приблизительно постоянно:

Искровой разряд сопровождается образованием ярко светящегося извилистого, разветвленного канала, по которому проходит кратковременный импульс тока большой силы. Примером можт служить молния; длина ее бывает до 10 км, диаметр канала - до 40 см, сила тока может достигать 100 000 и более ампер, продолжительность импульса составляет около .

Каждая молния состоит из нескольких (до 50) импульсов, следующих по одному и тому же каналу; их общая длительность (вместе с промежутками между импульсами) может достигать нескольких секунд. Температура газа в искровом канале бывает до 10000 К. Быстрый сильный нагрев газа приводит к резкому повышению давления и возникновению ударных и звуковых волн. Поэтому искровой разряд сопровождается звуковыми явлениями - от слабого треска при искре малой мощности до раскатов грома, сопровождающих молнию.

Возникновению искры предшествует образование в газе сильно ионизированного канала, получившего название стримера. Этот канал получается путем перекрытия отдельных электронных лавин, возникающих на пути искры. Родоначальником каждой лавины служит электрон, образующийся путем фотоионизации. Схема развития стримера показана на рис. 87.1. Пусть напряженность поля такова, что электрон, вылетевший за счет какого-либо процесса из катода, приобретает на длине свободного пробега энергию, достаточную для ионизации.

Поэтому происходит размножение электронов - возникает лавина (образующиеся при этом положительные ионы не играют существенной роли вследствие гораздо меньшей подвижности; они лишь обусловливают пространственный заряд, вызывающий перераспределение потенциала). Коротковолновое излучение, испускаемое атомом, у которого при ионизации был вырван один из внутренних электронов (это излучение показано на схеме волнистыми линиями), вызывает фотоионизацию молекул, причем образовавшиеся электроны порождают все новые лавины. После перекрывания лавин образуется хорошо проводящий канал - стример, по которому устремляется от катода к аноду мощный поток электронов - происходит пробой.

Если электроды имеют форму, при которой поле в межэлектродном пространстве приблизительно однородно (например, представляет собой шары достаточно большого диаметра), то пробой возникает при вполне определенном напряжении значение которого зависит от расстояния между шарами . На этом основан искровой вольтметр, с помощью которого измеряют высокое напряжение . При измерениях определяется наибольшее расстояние при котором возникает искра. Умножив затем на получают значение измеряемого напряжения.

Если один из электродов (или оба) имеет очень большую кривизну (например, электродом служит тонкая проволока или острие) то при не слишком большом напряжении возникает так называемый коронный разряд. При увеличении напряжения этот разряд переходит в искровой или дуговой.

При коронном разряде ионизация и возбуждение молекул происходят не во всем межэлектродном пространстве, а лишь вблизи электрода с малым радиусом кривизны, где напряженность ноля достигает значений, равных или превышающих . В этой части разряда газ светится. Свечение имеет вид короны, окружающей электрод, чем и вызвано название этого вида разряда. Коронный разряд с острия имеет вид светящейся кисти, в связи с чем его иногда называют кистевым разрядом. В зависимости от знака коронирующего электрода говорят о положительной или отрицательной коронах. Между коронирующим слоем и некоронирующим электродом расположена внешняя область короны. Режим пробоя существует только в пределах коронирующего слоя. Поэтому можно сказать, что коронный разряд представляет собой неполный пробой газового промежутка.

В случае отрицательной короны явления на катоде сходны с явлениями на катоде тлеющего разряда. Ускоренные полем положительные ионы выбивают из катода электроны, которые вызывают ионизацию и возбуждение молекул в коронирующем слое. Во внешней области короны поле недостаточно для того, чтобы сообщить электронам энергию, необходимую для ионизации или возбуждения молекул.

Поэтому проникшие в эту область электроны дрейфуют под действием ноля к аноду. Часть электронов захватывается молекулами, вследствие чего образуются отрицательные ионы. Таким образом, ток во внешней области обусловливается только отрицательными носителями - электронами и отрицательными ионами. В этой области разряд имеет несамостоятельный характер.

В положительной короне электронные лавины зарождаются у внешней границы короны и устремляются к коронирующему электроду - аноду. Возникновение электронов, порождающих лавины, обусловлено фотоионизацией, вызванной излучением коронирующего слоя. Носителями тока во внешней области короны служат положительные ионы, которые дрейфуют под действием поля к катоду.

Если оба электрода имеют большую кривизну (два коронирующих электрода), вблизи каждого из них протекают процессы, присущие коронирующему электроду данного знака. Оба коронирующих слоя разделяются внешней областью, в которой движутся встречные потоки положительных и отрицательных носителей тока. Такая корона называется двуполярной.

Упоминавшийся в § 82 при рассмотрении счетчиков самостоятельный газовый разряд представляет собой коронный разряд.

Толщина коронирующего слоя и сила разрядного тока растут с увеличением напряжения. При небольшом напряжении размеры короны малы и ее свечение незаметно. Такая микроскопическая корона возникает вблизи острия, с которого стекает электрический ветер (см. § 24).

Корона, появляющаяся под действием атмосферного электричества на верхушках корабельных мачт, деревьев и т. п., получила в старину название огней святого Эльма.

В высоковольтных устройствах, в частности в линиях высоковольтных передач, коронный разряд приводит к вредным утечкам тока. Поэтому приходится принимать меры для его предотвращения. С этой целью, например, провода высоковольтных линий берут достаточно большого диаметра, тем большего, чем выше напряжение линии.

Полезное применение в технике коронный разряд нашел в электрофильтрах. Очищаемый газ движется в трубе, по оси которой расположен отрицательный коронирующий электрод. Отрицательные ионы, имеющиеся в большом количестве во внешней области короны, оседают на загрязняющих газ частицах или капельках и увлекаются вместе с ними к внешнему некоронирующему электроду. Достигнув этого электрода, частицы нейтрализуются и оседают на нем. Впоследствии при ударах по трубе осадок, образованный уловленными частицами, осыпается в сборник.